Towards Conscious-like Behavior in Computer Game Characters

Raúl Arrabales, Agapito Ledezma and Araceli Sanchis

Computer Science Department Carlos III University of Madrid <u>http://Conscious-Robots.com/Raul</u>

IEEE Symposium on Computational Intelligence and Games 2009 Politecnico di Milano, Milano, 9th September 2009

- Introduction
- Motivation and Objectives
- State of the Art
- Consciousness and Games
- Experimental Environment
- Proposed Architecture
- Evaluation
- Conclusions

→ Introduction (I)

- Objective:
 - Design more appealing synthetic characters.
 - More engaging, more real.
 - Human-like (Conscious-like behaviors).
- Problem:
 - Many cognitive skills involved.
 - How to integrate them effectively?

→ Introduction (II)

- Character design challenges:
 - Emotions, planning, learning, opponent modeling, attention, set shifting, etc.
 - How can they be integrated effectively?
- Our hypothesis:
 - Use a cognitive architecture based on a model of consciousness.

Motivation and Objectives

Ultimate goal:

Characters able to pass the (adapted) Turing test.

Why?

- State of the art video games
 - Complex virtual environments.
 - Elaborated scripts.
 - Require more realistic behaviors.

→ State of the art

- Current AI characters cannot match humanlike behavior.
 - E.g. see last year 2K Botprize contest results.
- Usually, playing with other humans is more realistic and engaging that playing with AI bots.

Apply Machine Consciousness to games to improve believability?

➡ Consciousness and Games (I)

- Embodiment and situatedness are claimed to be critical for the production of consciousness.
- We argue that consciousness-based software agents can also be embodied and situated.
 - Software sensors and actuators.
 - Causal interaction with the world.
 - Virtual World (virtually situated).
 - Real World (interaction with human players).

➡ Consciousness and Games (II)

- Games versus Physical Robots
 - Robots possess physical body.
 - Robots interact directly with physical world.
 - Robots have to deal with noise and uncertainty.
- These aspect can be seen as benefits or drawbacks
 - Games are ideal for focusing on high-level control.

Experimental Environment

FPS: Unreal Tournament 2004

Proposed Architecture (I)

- Context: Machine Consciousness Research.
 - Specifically: Design of machines showing conscious-like behavior.
- Access Consciousness (*A-Consciousness*) Approach:
 - Only a small selection of contents gain access to a unique sequential thread for explicit processing and volition.
- Computational model based on:
 - Global Workspace Theory (Baars, 1988).
 - Multiple Draft Model (Dennett, 1991).

➡ Proposed Architecture (II)

- Computational model of consciousness:
 - Large number of specialized processors.
 - Competing and collaborating to access a global workspace (working memory).
 - Where coherent information patterns are selected.

➡ Proposed Architecture (III)

➡ Proposed Architecture (IV)

- CERA-CRANIUM Architecture
 - Implements the computational model of A-Consciousness.
 - CERA is a layered control architecture.
 - CRANIUM is a runtime component for the management of specialized processors.

➡ Proposed Architecture (V)

CERA-CRANIUM Perception Flow

➡ Proposed Architecture (VI)

CRANIUM Workspace (at CERA Physical layer)

➡ Proposed Architecture (VII)

CRANIUM Workspace Modulation

➡ Proposed Architecture (VIII)

CRANIUM Workspace Modulation

➡ Proposed Architecture (IX)

- CERA-CRANIUM instantiation for UT2004
 - CERA sensory-motor services layer.
 - CERA physical layer specialized processors.
 - CERA mission-specific layer specialized processors.
 - CERA core layer goals and model state.

➡ Proposed Architecture (X)

- Example of percepts for UT2004
 - SP(*Being Damaged*) + SP(*See Enemy*) + CP(*Enemy Approaching*) = MP(*Enemy Attacking*)

➡ Evaluation (I)

- Assessing believability is not straighforward.
 - Subjective process.
 - Depends on opponents behavior.
 - Game score is not significant.

PLAYER	AVERAGE SCORE
Rule-Based System Bot	19.2
Q-Learning Bot	5.2
Q-Learning and Expert Systems Hybrid Bot	11.3
CERA-CRANIUM Bot	18.3

➡ Conclusions

- The application of consciousness-inspired cognitive architectures is promising.
- We need to incorporate learning algorithms and long term (episodic and semantic) memory to the model.
- Improve ToM (opponent/friend modeling).

➡ Thank you