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Abstract 

This paper describes a novel framework designed as a test bed for machine consciousness 

cognitive models (MCCM). This MCCM experimentation framework is based on a general-

purpose cognitive architecture that can be integrated in different environments and confronted 

with different problem domains. The definition of a generic cognitive control system for abstract 

agents is the root of the versatility of the presented framework. The proposed control system, 

which is inspired in the major cognitive theories of consciousness, provides mechanisms for both 

sensory data acquisition and motor action execution. Sensory and motor data is represented in the 

proposed architecture using different level workspaces where percepts and actions are generated 

thanks to the competition and collaboration of specialized processors. Additionally, this cognitive 

architecture provides the means to modulate perception and behavior; in other words, it offers an 

interface for a higher control layer to drive the way percepts and actions are generated and how 

they interact with each other. This mechanism permits the experimentation with virtually any high 

level cognitive model of consciousness. An illustrative application scenario, autonomous explorer 

robots, is also reviewed in this work. 

  

Keywords:  Cognitive architectures, cognitive modeling, machine consciousness. 

1. Introduction 

From the point of view of an Artificial Intelligence engineer, most of the existing theories of 

consciousness, which typically come from philosophy or psychology, do not provide a fully 

plausible explanation of what a conscious being is and how consciousness could be produced in a 

machine. Instead, they offer a more or less metaphorical description of consciousness, but not a 

model that can be directly implemented in computational terms. Nevertheless, cognitive theories 

of consciousness, like Global Workspace Theory (Baars, 1997) or Multiple Draft Model 

(Dennett, 1991), have some aspects in common that can be taken as a functional guideline for the 

design of at least a partial computational model of consciousness. 

Although authors use different names or descriptions, cognitive theories of consciousness 

share the assumption that the unity of self produced in conscious beings has its roots in non-

unitary mechanisms. More precisely, it is argued that conscious contents emerge as a result of 
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competition and collaboration between specialized processors (Minsky, 1988; Dennett, 1991; 

Hofstadter, 1995; Baars, 1997; Shanon, 2008). Different theories offer different explanations or 

metaphors regarding the specific way in which these processes of competition and collaboration 

take place; however, all theories agree on their highly adaptable and dynamic nature. 

Some remarkable examples of machine consciousness implementations inspired in these sorts 

of theories are Shanahan’s cognitive architecture (Shanaham, 2005, 2006) and LIDA 

(Ramamurthy et al., 2006). Given that the detailed way in which consciousness is produced is not 

explained by the aforementioned theories, each existing MCCM take a different approach 

regarding the concrete way in which perceptual and action flows are built and managed. There 

exists however a common denominator in relation to the underlying mechanism used to perform 

low-level cognitive processes: the concurrent collaboration and competition of multiple 

specialized processors in a shared workspace. What differs from one implementation to another is 

the specific technique applied to orchestrate the collaboration and competition processes. 

Additionally, each particular implementation is usually oriented towards specific environments 

and problem domains, making it difficult to compare their relative performance. It is our aim to 

provide a platform where different high-level cognitive approaches can be tested and compared 

with each other. In order to design such a test bed we have developed a generic but configurable 

low-level cognitive architecture based on multiple level workspaces. The proposed framework 

aims to provide the main functional features of a general-purpose cognitive architecture that can 

be used as the base of a higher level computational model of consciousness. Taking into account 

the description of conscious content formation described by the main cognitive theories of 

consciousness, mechanisms for specialized processors creation, association, combination, and 

competition have been implemented as well as appropriate means to regulate these processes. 

Adopting a purely cognitive perspective as introduced above does not necessarily imply that 

phenomenal aspects of consciousness are neglected in our work. Although our efforts are 

specifically focused on functional features of consciousness, phenomenology is expected to be 

the main subject of study after all key functional aspects are successfully implemented and tested. 

The details of the proposed framework are discussed as follows. Section 2 provides an 

overview of CERA-CRANIUM layered design and an overall description of the perception and 

action cognitive flows. Section 3 covers the application of the proposed framework to the 

particular domain of unknown environment exploration using a mobile robot. Finally, 

conclusions and open research issues are discussed in section 4.  

2. CERA-CRANIUM Overview  

In order to build an efficient framework for the development and testing of cognitive models of 

consciousness we have designed and implemented the following main components: CERA, a 

control architecture structured in layers, and CRANIUM, a tool for the creation and management 

of high amounts of parallel processes in shared workspaces. As we explain below, CERA uses the 

services provided by CRANIUM with the aim of generating a highly dynamic and adaptable 

perception processes orchestrated by a computational model of consciousness. 

2.1 CERA 

CERA (Conscious and Emotional Reasoning Architecture) is a layered cognitive architecture 

designed to implement a flexible control system for autonomous agents. Current definition of 

CERA is structured in four layers (see Figure 1): sensory-motor services layer, physical layer, 
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mission-specific layer, and core layer. As in classical robot subsumption architectures, higher 

layers are assigned more abstract meaning; however, the definition of layers in CERA is not 

directly associated to specific behaviors:  

 

CERA sensory-motor services layer comprises a set of interfacing and communication services 

which implement the required access to both sensor readings and actuator commands. In order to 

endow an agent with a full CERA controller system, every sensor must have its corresponding 

sensor service; analogously, every actuator must have its corresponding motor service. These 

services provide the physical layer with a uniform access interface to agent’s physical (or 

simulated) machinery. 

 

CERA physical layer encloses agent’s sensors and actuators low-level representations. 

Additionally, according to the nature of acquired sensory data, the physical layer performs data 

preparation and preprocessing. Analogous mechanisms are implemented at this level with 

actuator commands, making sure for instance that command parameters are within safety limits. 

Although sensory information binding does not take place at this level, low-level 

contextualization parameters, like relative positions and timestamps, are calculated and annotated 

in the physical layer. 

 

CERA mission-specific layer (formerly referred to as instantiation layer) produces and manages 

elaborated sensory-motor content related to both agent’s vital behaviors and particular missions 

(one mission will typically involve several goals). At this stage is when single contents acquired 

and preprocessed by the physical layer are combined into more complex pieces of content, which 

have some specific meaning related to agent’s goals. The mission-specific layer can be modified 

independently of the other CERA layers according to assigned tasks and agent’s needs for 

functional integrity.  

 

CERA core layer, the highest control level in CERA, encloses a set of modules that perform 

higher cognitive functions. The definition and interaction between these modules can be adjusted 

in order to implement a particular MCCM. In some of our former works (Arrabales et al., 2006, 

2007, 2008), we have identified the following core modules: attention, status assessment, 

preconscious management, memory management, and self-coordination. Nevertheless, CERA is 

designed to allow a custom definition of core modules. The objective of the mentioned modules is 

discussed below as well as the mechanisms they use to modulate the way CERA lower layers 

work. 
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Figure 1. CERA cognitive architecture layered design.  
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In order to perform an experiment using the proposed test bed, four variables have to be assigned 

a particular value: cognitive model of consciousness to be tested, physical (or simulated) agent, 

assigned mission, and environment. This so-called instantiation process involves the definition of 

CERA core layer modules, implementation of interfaces for the particular agent’s sensors and 

actuators (CERA sensory-motor services layer), and definition of mission-specific routines 

(CERA mission-specific layer). For the particular case of MCCM comparative study, 

environment, mission, and agent have to remain constant; therefore, the only changes required in 

order to test different cognitive models of consciousness have to be made within the CERA core 

layer. 

Physical and mission-specific layers are characterized by the inspiration on cognitive theories 

of consciousness, where large sets of parallel processes compete and collaborate in a shared 

workspace in the search of a global solution. Actually, a CERA controlled agent is endowed with 

two hierarchically arranged workspaces which operate in coordination with the aim to find two 

global and interconnected solutions: one is related to perception and the other is related to action. 

In short, CERA has to provide an answer for the following questions continuously: 

 

1. What must be the next content of agent’s conscious perception? 

2. What must be the next action to execute?  

 

Typical robot control architectures are focused on the second question while neglecting the first 

one. Here we argue that a proper mechanism to answer the first question is required in order to 

successfully answer the second question in a human-like fashion. Anyhow, both questions have to 

be answered taking into account safety operation criteria and the mission assigned to the agent. 

Consequently, CERA is expected to find optimal answers that will eventually lead to human-like 

behavior. As explained below, CRANIUM is used for the implementation of the workspaces that 

fulfill the needs established by the CERA architecture. 

2.2 CRANIUM 

CRANIUM (Cognitive Robotics Architecture Neurologically Inspired Underlying Manager) 

provides a software library in which CERA can execute thousands of asynchronous but 

coordinated concurrent processes. In addition to the design guideline based on the main cognitive 

theories of consciousness, CRANIUM is also inspired by the way brain works from the systems-

level point of view, where specialized regions process information coming both from the senses 

or from other specialized regions. According to the global access hypothesis (Baars, 2002), neural 

connections between specialized areas make possible the emerging global coordination. 

A CRANIUM workspace can be seen as a particular implementation of a pandemonium, as 

described in (Dennett, 1991), where demons compete with each other for activation. Each of these 

demons or specialized processors is designed to perform a specific function on certain types of 

data. At any given time the level of activation of a particular processor is calculated based on a 

heuristic estimation of how much it can contribute to the global solution currently sought in the 

workspace. The concrete parameters used for this estimation are established by the CERA core 

layer as explained below. As a general rule, CRANIUM workspace operation is constantly 

modulated by commands sent from the CERA core layer. 

In the proposed framework we use two separated but connected CRANIUM workspaces 

integrated within the CERA architecture. The lower level workspace is located in the CERA 

physical layer, where specialized processors are fed with data coming from CERA sensor 
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services. The second workspace, located in the CERA mission-specific layer, is populated with 

higher-level specialized processors that take as input either the information coming from the 

physical layer or information produced in the workspace itself (see Figure 2). The perceptual 

information flow is organized in packages called single percepts, complex percepts, and mission 

percepts. The details about these constructs are explained in the next subsections. 

 

 
 

In addition to the bottom-up flow involving perception processes, a top-down flow takes place 

simultaneously in the same workspaces in order to generate agent’s actions. Physical layer and 

mission-specific layer workspaces include single actions, simple behaviors, and mission 

behaviors (see Figure 3). The detailed way in which these motor representations are managed is 

also covered in the following subsections. 

 

 

 

 

One of the key differences between CERA-CRANIUM bottom-up and top-down flows is that 

while percepts are being iteratively composed in order to obtain more complex and meaningful 

representations, high level behaviors are iteratively decomposed until a sequence of atomic 

actions is obtained. As described below, there are different types of specialized processors that 

can be implemented and associated with CRANIUM workspaces. At first glance, it seems that 

specialized processors either take percepts or behaviors as input. Nevertheless, some specialized 

processors are designed to generate behaviors as a function of received percepts. For instance, 

high-priority reactive responses are rapidly generated in the physical layer, typically without any 

intervention from the upper layer. If a complex percept indicating a physical threat appears in the 

physical workspace, the specialized processor in charge of detecting this sort of threat will be 

activated and it will generate a reactive simple behavior as a response (see Figure 4). The 

obtained evasive simple behavior will be selected and the corresponding sequence of actions will 

be executed by the CERA sensory-motor services layer. 
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Figure 2. CERA-CRANIUM bottom-up flow: perception. 

Figure 3. CERA-CRANIUM top-down flow: behavior generation. 
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A CRANIUM workspace provides a shared and global access working memory where data can 

be read or written by any associated specialized processor. In the particular case depicted in 

Figure 4, which has been simplified for the sake of clarity, three single percepts are generated and 

added to the physical workspace as a consequence of an impact detected almost simultaneously in 

three contiguous bump panels of a mobile robot (this particular example is studied in detail in the 

next section). The percept aggregator processor reads these single percepts and builds a new 

complex percept out of their data. The concrete set of single percepts selected in order to form the 

new complex percept is determined thanks to the application of multiple context criteria. Once 

the new complex percept is generated and published in the workspace, a reactive processor can 

read it and detect a condition in which a quick reactive response is required. If such a condition is 

met, the reactive processor is able to build a simple behavior designed to diminish or prevent the 

consequences of the detected undesired situation. The presence of the reactive simple behavior in 

the workspace triggers the activation of the action planner specialized processor, which in turn 

will produce the corresponding sequence of single actions. 

As discussed in the former example, there are various types of specialized processors. All 

these processors work as asynchronous independent programs that are able to subscribe to a 

workspace, read certain data types from it, perform a particular processing, and then submit new 

elaborated data back to the workspace, where it becomes available for the rest of specialized 

processors. Basically, a CRANIUM workspace interacting with its associate processors 

constitutes a blackboard system (Nii, 1986), where CERA plays the role of the blackboard control 

shell. Most important CRANIUM processor types are briefly described as follows (an exhaustive 

list of all processor types is out of the scope of the present work): 

 

Sensor preprocessors collect raw sensory data that appears in the physical workspace and build 

single percepts by combining sensor readings with contextual information that can be associated 

to them. The generated single percepts are automatically sent to the same workspace. In order to 

perform this task, sensor preprocessors also retrieve system information available in the 

workspace, like limbs relative positions and timing. 

 

Action preprocessors prepare atomic actions generated by action planners (another type of 

processor) to enter the execution cycle. Basically, action preprocessors build the so-called single 

action constructs which include contextual data about actions. For instance, every single action 

encloses the exact timestamp corresponding to the moment it was created (planned) and also the 

actual timestamp assigned for execution by the CERA action dispatcher. This information is used 

to abort the execution of actions that have been queued for too long. Proprioceptive sensory data 

is also included in order to adapt actions to the current position of the actuators. 
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Figure 4. Simplified scheme of the reflex mechanism in a mobile robot controlled by CERA-CRANIUM. 
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Percept aggregators are the processors in charge of building complex percepts out of 

interrelated single percepts. While single percepts represent atomic sensory information, complex 

percepts are more elaborated and meaningful combinations of the former. Multiple context 

criteria can be considered in the formation of complex percepts. Consequently, different types of 

percept aggregators will focus on different parameters for the selection of the single percepts they 

combine. As soon as complex percepts are generated, percept aggregators send them to the 

workspace, where other processors could use them for further aggregation processes.  

 

Reactive processors are typically located in the physical layer in order to provide a quick 

response to stimuli that are considered harmful or highly undesired for the agent. These 

processors monitor the generated single and complex percepts looking for particular unsafe 

conditions. If such conditions are met, the processors build simple behaviors intended to mitigate 

the detected risk. 

 

Action planners are processors able to take a behavior as input and generate the corresponding 

sequence of atomic actions that will lead to behavior completion. Thanks to action planners all 

active behaviors in a workspace are processed and the corresponding action sequences are 

submitted to be eventually executed. 

 

Sensory Predictors monitor a particular source of sensory information incessantly, interpreting it 

as a continuous signal that can be predicted in the short term. When the sensory input under 

analysis differs significantly from the prediction, these processors build a mismatch complex 

percept that is placed in the corresponding workspace. Mismatch complex percepts are used to 

concentrate attention on unusual perceptions. 

  

Having a shared workspace, where sensory and motor flows converge, facilitates the 

implementation of the multiple feedback loops required for adapted and effective behavior. The 

winning simple behavior is continuously confronted to new options generated in the physical 

layer, thus providing a mechanism for interrupting behaviors in progress as soon as they are no 

longer considered the best option. In general terms, the activation or inhibition of perception and 

behavior generation processes is modulated by CERA according to the implemented cognitive 

model of consciousness. Figure 5 shows a schematic representation of typical feedback loops 

produced in the CERA architecture. These loops are closed when the consequences of actions are 

perceived by the agent, triggering adaptive responses at different levels. 

 

 
 

 

Curve (a) in Figure 5 represents the feedback loop produced when an instinctive reflex is 

triggered as in the example depicted in Figure 4. Figure 5 curve (b) corresponds to a situation in 

which a mission-specific behavior is being performed unconsciously. Finally, curve (c) 

CERA M-S Layer CERA Core Layer CERA Physical Layer CERA S-M WORLD 

(a) 

(b) 

(c) 

Figure 5. Different feedback loops produced in the CERA-CRANIUM. 
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symbolizes the higher level control loop, in which a task is being performed consciously. These 

three types of control loops are not mutually exclusive; in fact, same percepts will typically 

contribute to simultaneous loops taking place at different levels. 

As explained above, the implementation of CERA-CRANIUM computational model has 

strong requirements in terms of concurrency and asynchronous input/output. The software 

architecture designed to address this issue is described in the next subsection. 

2.3 Software Architecture 

The concepts about CERA-CRANIUM described above refer to the cognitive-level architecture. 

However, building such a system also requires an underlying well designed software architecture. 

A good software engineering strategy will allow us to have a robust and extensible artifact that 

can be easily modified, enhanced and reused. Additionally, performance and scalability are 

factors that cannot be ignored due to the large computational demands correlated with a high 

number of specialized processors to be executed concurrently. Bearing these considerations in 

mind, as well as the requirement of a powerful physics simulator, the software development 

platform selected for the implementation of CERA-CRANIUM is Robotics Developer Studio 

2008 (Microsoft, Corp., 2008).  

The Robotics Developer Studio runtime is based on two key components: the CCR or 

Concurrency and Coordination Runtime (Richter, 2006), which we use for asynchronous 

programming and specialized processors concurrency management; and the DSS or Decentralized 

Software Services (Nielsen and Chrysanthakopoulos, 2006), which provide us with a framework 

for implementing a light-weight distributed service-oriented architecture. Applying the service 

orientation paradigm (Singh and Huhns, 2005), each CERA layer has been defined as an 

independent service that, if needed, can be executed in a separate machine. Consequently, the 

communication between layers is implemented using the DSS protocol (DSSP). Each CRANIUM 

workspace allocates at least one managed high-performance thread pool that dispatches 

specialized processors tasks across all available CPUs. CRANIUM thread dispatching mechanism 

and asynchronous I/O coordination patterns are adjusted by CERA core layer commands. Figure 

6 depicts a simplified view of main software architecture components and their communication 

scheme (circles between modules indicate asynchronous communication implemented using CCR 

task ports). 
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2.4 Knowledge Representation 

Knowledge representation is one of the key problems in artificial general intelligence, and so is in 

the particular field of machine consciousness. Any machine consciousness model should provide 

a satisfactory account for world knowledge representation and symbol grounding (Haikonen, 

2007). In CERA-CRANIUM, sensory and motor data is iteratively processed inside the 

workspaces and across layers in order to build higher level meaningful knowledge about the 

world. Raw sensory data coming directly from the sensors is initially processed by specific sensor 

preprocessors in the physical layer workspace. These preprocessors build single sensor data 

representations called single percepts. Single percepts are integrations of mono-modal sensor data 

packages and their associated contextualization parameters. Basically, contextualization 

parameters characterize the perceived stimulus in terms of relative position and time of the 

sensing event (see Figure 7). CERA physical layer encloses a number of modules designed to 

keep track of physical variables. For instance, the timer module implements a precision clock that 

represents the age of the agent down to a resolution of 1 millisecond. In addition, the 

proprioception module calculates the position of exteroceptive sensors. These parameters are used 

by the sensor preprocessors to calculate the relative location of the percept being acquired by the 

corresponding exteroceptive sensor. As shown elsewhere (Arrabales et al., 2009a), additional 

contextualization parameters can be established in CERA in order to obtain more accurate and 

selective perceptions. 

 

 
 

 

Following Aleksander’s notation for axioms of neuroconsciousness (Aleksander and Dunmall, 

2003), where S is the sensory accessible world and δSj represents a minimal percept. A necessary 

requirement for perception is that such a minimal percept must have a correlated agent’s internal 

physical state: N(δSj). According to this notation, j represents the relative location, that is, the 

encoding of the location where the percept has been originated from the point of view of the 

observer organism. Consequently, N(S) is the entire internal representation of the world built by 

the agent. In CERA physical layer, single percepts produced by sensor preprocessors include 

relative contextual information that we call J (J also include representations to encode relative 

locations called j referent vectors). In other words, single percepts can be referred to as N(δSJ), 

where J is a set of contextual parameters including j (relative position) and t (timestamp). 

Therefore, N(S) is the union of the N(δSJ) representations produced by CERA (see Equation 1). In 

CERA, the representation of relative contextual parameters, J, is not encoded using neural 

networks, but explicit representations in the form of geometrical vectors or integer variables (as 

explained in the example discussed in next section). 

 

 

 

 

Sensor 

Single Percepts 
 

 
 

 
Sensor 

Preprocessors 

Sensor Readings 

Timer 

Proprioception 

Sensor 

Service 

Agent 

CERA sensory-

motor services 
CERA physical 

layer 

 

 
 

 
Percept 

Aggregators 

S (World) 

events 
δSj N(δSj) 

N(δSJ) 
j t 

Complex Percept 

M(SCJ) 

(1) 

Figure 7. Single percepts generation in CERA physical layer. 
 



ARRABALES ET AL 

10 

All single percepts are produced within the physical layer CRANIUM workspace, where they 

become accessible immediately to all physical layer specialized processors. Percept aggregator 

processors are able to combine two or more single percepts available in the workspace and build a 

so-called complex percept. Complex percepts can be mono-modal or multi-modal representations 

depending on the modality of the single percepts they come from. Basically, they constitute more 

elaborated representations of the world that have been assembled as a result of the application of 

certain contextualization rules.  

Similarly to single percepts, newly generated complex percepts are immediately published in 

the CERA physical workspace, and they are also sent to the mission-specific layer workspace. 

This means they become available to the specialized processors of both layers. Although current 

implementation does not include processors that combine several complex percepts into one 

larger complex percept, this feature could be added just by defining the corresponding specialized 

processors. Nevertheless, a composed J-index (CJ) is always calculated for each new complex 

percept. Percept aggregators combine the J-indexes coming from the original single percepts and 

build an integrated CJ-index that represents the contextualization parameters of the whole 

complex percept being formed. As single percepts are J-indexed, they can be grouped in terms of 

context criteria; for instance, a particular specialized processor might select all single percepts 

sensed 10 seconds ago in the left hand side of the agent and build the corresponding complex 

percept. According to this definition, complex percepts can be referred to as M(SCJ), a subset of 

agent’s internal world representation (see Equation 2). 

 

 

 

Problems can be encountered when a percept aggregator is building a new complex percept out of 

contradictory single percepts. This situation can be caused by sensor noise or malfunctioning 

hardware. Single percepts corresponding to different sensors but associated by a common context 

could provide contradictory data. In that case, some strategies can be applied in order to build a 

meaningful complex percept that successfully integrates all the data from the original single 

percepts. One option is to assign levels of confidence both to the sensory data and contextual 

parameters obtained by sensors. Other complementary option is to generate mismatch complex 

percepts that will raise core layer attention towards the unexpected situation.  

CERA mission-specific layer hosts a workspace in which complex percepts received from the 

lower layer become the input of mission-specific processors. Once more, mission-specific layer 

percepts are sent both to the same layer workspace and to the upper layer (CERA core layer in 

this case). Mission percepts could have been generated directly using one single CRANIUM 

workspace where single and complex percepts could be also included. However, using separated 

workspaces allow us to decouple physical agent specific processors and mission-specific 

processors. Some examples of mission-specific processors are briefly discussed in the next 

section. 

Motor data representation in CERA-CRANIUM is analogous to the sensory data 

representation explained above. Atomic actions are defined as δBI (Arrabales et al., 2007), being I 

the referent that indicates the parameters of movement (like direction and speed). M(BCI) 

represents a generic behavior, which is defined as a sequence of atomic actions. The CI notation 

refers to the integrated CI-index, which is the final context expected to be reached when the 

behavior is completed. For instance, if M(BCI) refers to a U-turn movement, CI-index will indicate 

the final position of the agent once the U-turn is completed. If the U-turn behavior is decomposed 

into atomic actions, a sequence of I-indexes corresponding to the sequence of steps required to 

(2) 
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perform the U-turn will represent the intermediate positions and speeds. Applying the same 

notation as used for percepts, N(δBI) refers to the representation hold in CERA physical layer for 

agent’s atomic actions. Analogously to the bottom-up processing carried out by sensor 

preprocessors, action preprocessors perform a top-down processing in order to build single 

actions out of atomic actions by including contextual information about time and relative position 

(see Figure 8).  

 

 
 

 

CERA action dispatcher manages an execution queue in which active single action sequences 

wait for execution. Single actions constructs include some parameters that can be used by the 

dispatcher to decide how to manage the queue. For instance, actions derived from highest priority 

simple behaviors are executed in the first place. 

Mission-specific behaviors are generated in the corresponding CERA layer, and then 

submitted to the physical layer where they are decomposed into a sequence of simple behaviors. 

The activation of mission-specific behaviors is driven by the application of mission goals and 

commands sent from the core layer. In general, the operation of CERA physical and mission-

specific layers is modulated by workspace commands sent from the core layer.  

2.5 Workspace Modulation 

CRANIUM workspaces are not passive short-term memory mechanisms. Instead, their operation 

is affected by a number of workspace parameters that influence the way the pandemonium works. 

These parameters are set by commands sent to physical and mission-specific layers from the 

CERA core layer. In other words, while CRANIUM provides the neural-like mechanism for 

specialized functions to be combined and thus generate meaningful representations, CERA 

establishes a hierarchical structure and modulates the competition and collaboration processes 

according to the model of consciousness specified in the core layer. This mechanism closes the 

feedback loop between the core layer and the rest of the architecture: core layer input (perception) 

is shaped by its own output (workspace modulation), which in turn determines what is perceived.  

All theories of consciousness differentiate between implicit and explicit processing (Atkinson 

et al., 2000). In CERA-CRANIUM all sensory-motor contents being processed in the workspaces 

are by default implicit or unconscious contents. The selection of a reduced subset of contents 

which will become available for explicit reasoning is carried out by the competition of both 

specialized processors and percepts. CERA-CRANIUM provides a mechanism to modulate these 

competition processes by means of commands sent from the core layer, where the cognitive 

model of consciousness to be tested is implemented. Specialized processors, behaviors (simple 

behaviors and mission-specific behaviors) and percepts (single percepts, complex percepts, and 

mission specific percepts) are assigned an activation level by the workspace. Activations levels 

are highly dynamic variables that are being constantly updated by the workspace. The role of 

these activation levels is twofold: on the one hand, percepts with a very low activation level are 
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not processed any further, thus saving the limited computational resources; on the other hand, 

percepts with the highest activation levels are iteratively processed until a winner is selected as 

conscious content. The operation of specialized processors is also affected by their activation 

levels. Processors with lower activation levels are less likely to be executed as they are assigned 

less priority in the workspace thread dispatching. 

Activation levels for specialized processors and percepts are calculated as a function of 

multiple parameters, being contextualization criteria the most important ones. Context commands 

are messages sent to the workspaces specifying a J-index. This contextual J-index establishes the 

context criteria (like time and relative location as discussed above) that have to be activated in the 

workspaces. For instance, a J-index might refer to the particular segment of agent’s visual field of 

view that fall between 8º and 14º. A context command sent with such a J-index would cause the 

increase of the activation level of those percepts with J-indexes indicating they have been sensed 

close to that particular position. The assigned activation level is inversely proportional to the 

distance between context command J-index and percept CJ-index. When a CRANIUM 

workspace receives a context command, activation levels of all percepts and processors inside the 

workspace are automatically recalculated. The distance between the specified contextual J-index 

and existing percepts J-indexes is calculated, and percept activations are assigned accordingly. 

The level of activation of processors is assigned in terms of the input they can process (activation 

of their potential input). 

As discussed in the example presented in the next section, active contexts are typically 

established in the core layer taking into account agent’s goals and feedback obtained from lower 

layers. Percept activation is also based on the match/mismatch/novelty mechanism proposed by 

Haikonen (2007). For instance, a mismatch percept will be initially assigned a high activation 

level because it might represent part of an unexpected situation that may require conscious 

attention. Once the mismatch signal reach the core layer, the MCCM can induce a contextual bias 

in the lower CERA levels by sending a context command specifying a J-index directed towards 

the unexpected percept. 

The contextual bias induced by the core layer determines the percepts that are formed. 

Consequently, the perception process is a highly active mechanism rather than a passive data 

retrieving system. As behaviors are also assigned an activation level, behavior generation is also 

affected to a great extent by active contexts. At any given time, a number of possible behaviors 

are generated in the workspaces; however, only those with the highest activation levels are likely 

to be selected and finally executed. The calculation of activation levels for behaviors is also based 

on the distance between the contextual J-Index and behaviors CI-Indexes. In other words, those 

behaviors which are directed to the same location as the active contexts will be selected. In fact, 

the contextual J-index is not only used for selecting existing behaviors, but also to generate new 

behaviors directed to current focus of attention. The application of these mechanisms is illustrated 

in the next section with a domain-specific example. The implementation of a very basic core layer 

is also discussed. 

3. Application in Autonomous Robot Exploration 

As discussed above, our proposed framework has been designed to be used as a test bed in 

multiple scenarios. Typical application environments for machine consciousness research include 

autonomous robots and virtual agents; see for instance (Holland, 2007) and (Goertzel, 2008). In 
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the following we briefly introduce an instantiation of the CERA-CRANIUM framework in the 

domain of unknown environment exploration and mapping using autonomous mobile robots.  

3.1 Experimental Setting 

Preliminary experiments have been developed using real and simulated Pioneer 3DX robots 

equipped with front and rear bumper arrays and a ring of eight forward ultrasonic transducer 

sensors (see Figure 9). 

As the mapping task is simplified to a two-dimensional grid, J-indexes are composed of j-

referent vectors that represent relative positions using just two coordinates, being (x,y) = (0,0) the 

subjective point of view of the robot. In this particular case of unknown environment exploration, 

spatial contexts have been defined in order to estimate optimal headings during robot navigation. 

A specific version of CERA mission-specific layer has been coded with the aim of representing 

the particular complex percepts that are required for the mapping mission. Concretely, sonar 

single percepts that represent obstacles are combined firstly into complex percepts, and secondly 

into mission-specific percepts that represent walls and corridors.  

 

 
Figure 9. Simulated and real Pioneer 3DX robots. 

 

Based on (mission-specific) internal map representations (see Figure 10), which are continuously 

updated with new sensed percepts, CERA core layer calculates an adaptive workspace 

modulation response as indicated by the implemented MCCM.  

 

 

 
Figure 10. Mission-specific percept representing the map. 

 

Each sensor provides different measurements of j-referents. As explained above, sonar range data 

is used for building mission percepts that represent walls or corridors. Given that sonar sensors 

usually provide noisy readings in real environments, contact sensors are also used for robustness 
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(especially when maneuvering too close to obstacles). For the sake of conciseness, in the 

following we only explain how single and complex percepts are built out of robot bumpers 

sensory information. For a detailed description of sonar percepts formation see (Arrabales et al., 

2009a). Pioneer 3DX bumper arrays consist of five points of contact sensing arranged at angles 

around the robot (see Figure 11).  

 

 

 
Figure 11. Pioneer 3DX frontal bumper array. 

 

The j-referents of single percepts generated when the bump panels are pressed are calculated 

using equation 3. Where BR is the bump panel radius (or the distance from the origin of the robot 

spatial reference system to the bumper contact surface), and BA is the bump panel angle to the 

front of the robot (bump panels are located at angles -52º, -19º, 0º, 19º, and 52º).  

 

 

 

Additionally, two more vectors are calculated to be associated to a bumper single percept: the 

left-j referent and the right-j referent vectors (see Figure 12). These two vectors represent the 

dimensions of the percept (the width assigned to the collision). All these referent vectors plus the 

contact timestamp are used to build the J-index of the bumper single percept. The combination of 

the J-Index and the sensory data provided by the sensor constitutes the N(δSJ). In the case of 

bumper single percepts sensory data is just the indication of a bump panel press or release. Other 

sensor modalities will include other types of data like range measurements or image bitmaps. 

 

 
Figure 12. Referent vectors calculated to build the J-index of a bumper single percept. 

(0,0) 

-52º 

-19º 

0º 

19º 

52º 

BAb5 

BR 

(3) 

b1 

b2 

b3 
b4 

b5 

Impact 

j referent 
Left-j referent 

Right-j referent 

N(δSJ) 



15 

Using time and relative location parameters as contextualization criteria single percepts can 

be related and associated forming complex percepts. For example, if the bumper service from the 

CERA sensory-motor services layer reports contacts in bump panels b2, b3, and b4 

simultaneously (see Figure 13), three single percepts are created by bumper sensor preprocessors 

in CERA physical layer. Then, these three single percepts can be associated by temporal and 

location active contexts by a percept aggregator.   

 

 
Figure 13. Calculation of the J-index of a bumper complex percept. 

 

The newly created complex percept is assigned a new CJ-index, which is obtained as a 

combination of single percepts J-indexes (note that Figure 13 solid lines depict the complex 

percept CJ-index, while dashed lines represent the referent vectors of the old single percepts). As 

b2, b3, and b4 are located side by side, the CJ-Index of the new bumper complex percept will 

have as left-j referent the left-j referent of single percept triggered by b2; analogously, complex 

percept right-j referent will be the same as right-j referent from single percept triggered by b4.  

The way in which the CJ-Index of a complex percept is calculated depends on the nature 

(shape, dimensions, etc.) of the single percepts that take part in the context that gave place to it, 

and has to be calculated by the corresponding percept aggregator. The composition of CJ-indexes 

is trivial when all single percepts belong to the same modality. However, the composition can be 

much more complicated when different modalities are involved. See (Arrabales el al., 2009a) for 

details about the calculation of CJ-indexes for multimodal complex percepts. 

Motor capabilities of the Pioneer 3DX robot are based on a two-wheel differential drive 

system. Robot movement control has been greatly simplified in the current setting, considering 

only two atomic actions: rotate in place and move straight. This means that any high level 

behavior will ultimately be represented in terms of sequences of these single actions. Attending to 

the relative direction specified by the active contextual J-index, an angle parameter is calculated 

for the rotate in place operation in order to set the robot heading towards the location that “called 

the robot’s attention”. Also a speed parameter is calculated as a function of the distance to the 

object.  

In addition to the global exploration behavior, which is driven by the top-down contextual J-

index, local obstacle avoidance behaviors are also implemented thanks to some mission-specific 

processors like Nearest-Obstacle-Detector and Possible-Impact-Detector. The first one monitors 

sonar percepts and creates mission percepts indicating the position of nearest obstacle; the second 

one reads sonar complex percepts and current active behavior in order to calculate the possibility 

of a collision. The output of these processors is in turn monitored by a reactive processor, which 
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will generate a high priority simple behavior for obstacle avoidance only when there is an 

obstacle close to the robot and the robot is approaching it (instead of steering away from it). 

3.2 CERA Core Layer Design 

Taking into account that minimizing exploration time is a requirement of the autonomous 

mapping mission, attention should be focused on those areas which have not been previously 

visited. This functionality could be implemented as some sort of attentional mechanism located in 

the CERA mission-specific layer. However, one of the key features of CERA-CRANIUM is that 

higher cognitive abilities, like attention, are not directly implemented as mission-specific 

procedures. In fact, higher cognitive abilities should be problem domain independent, and 

therefore implemented in the core layer. This means that the operation of the core layer is 

directed by meta-goals instead of mission-specific goals. Here is where the specific definition of 

a MCCM comes into play, because meta-goals are defined in terms of the particular cognitive 

model being implemented. For instance, discovering abstractions (detecting an invariant in a 

variance) is a possible definition for a mission-independent meta-goal.  

The definition of goal types at different CERA layers can help illustrate the role of the core 

layer and the implemented cognitive model. Feedback loops depicted in Figure 5 can also be 

expressed in terms of different level goals: (a)-type loops or reflexes are the expression of 

physical level goals (basic-goals). These goals are assigned the higher priority and can trigger 

behaviors without the intervention of higher layers. (b)-type loops trigger behaviors directed to 

provide full or partial solutions to the specific problem domain (mission-goals). Finally, (c)-type 

loops are generated as a mean to achieve meta-goals. The precise definition of meta-goals and 

how they affect the operation of CRANIUM workspaces is defined by the cognitive model 

implemented in the core layer. While the available set of mission-goals defines the possible 

functionality of the robot, meta-goals shape the overall resulting behavior. In other words, CERA 

core layer provides the mean to orchestrate the operation of the whole control system using 

models for higher level cognitive features like emotions, attention, imagination, etc. Examples of 

the implementation of these features using CERA-CRANIUM are briefly described below. 

According to the implemented MCCM, the CERA core layer is intended to periodically 

calculate a contextual J-index that represents current cognitive region of interest for the robot. In 

fact, this J-index represents the bias (workspace modulation) that core layer will induce in lower 

CERA layers. The input data processed by the cognitive model in order to calculate an adaptive 

workspace modulation consists of the set of mission and complex percepts received from the 

mission-specific layer (see Figure 14). These percepts provide information about contexts (CJ-

indexes), activation, match/mismatch/novelty signals, mission-goals level of accomplishment, 

behaviors being currently executed, etc. 
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The main task of the cognitive model implementation is to iteratively calculate an adaptive 

contextual J-Index. In the unknown environment exploration example, J is bi-dimensional, 

because only time and relative location are considered. Nevertheless, contexts could be defined 

using additional properties; consequently, J-Indexes can be defined as n-dimensional constructs. 

From the point of view of the Global Workspace Theory, the core layer generates the 

contexts that outline the border of the metaphorical spotlight. From the point of view of the 

Multiple Draft Model, the core layer is in charge of selecting the winning version (reduced set of 

percepts) which will become the explicit content of the mind. In short, while physical and 

mission-specific layers provide the required environment for the composition of implicit percepts, 

the execution of the model implemented in the core layer induces a modulation which directs the 

generation and selection of explicit percepts. CERA core layer is designed to host any model able 

to generate a J-index as a function of the incoming percepts. Figure 14 represents a simplified 

implementation of a generic MCCM. In the illustration, a rule-based system takes incoming 

percepts and current state as input and generates an adaptive contextual J-index. Rules are 

expected to be defined based on the model meta-goals, and state can be maintained as indicated 

by rules. Meta-goals are defined as mission-independent goals, that is, they are defined 

exclusively in terms of MCCM parameters. For instance, if the model considers emotions, a 

possible meta-goal can be to keep a positive emotional state. 

In the case of our autonomous explorer robot, a simple model has been implemented 

considering emotions. A reduced set of basic emotions has been considered, as well as their 

associated rules that contribute to the final calculation of an adaptive contextual J-index. For 

instance, curiosity is defined as an emotion that directs attention toward selected contents. 

Therefore, an incoming CJ-index associated with a novelty percept will trigger the curiosity rule, 

and contribute to direct the next contextual J-Index towards the novelty CJ-index. Novelty 

percepts are generated in the mission-specific layer by specialized processors able to perform 

scans over map mission percepts. The example illustrated in Figure 10 shows a map mission 

percept and also a 22.5º inclination j referent vector generated as a novelty percept. The 

application of the curiosity rule will likely produce a contextual J-Index in the core layer that will 

make the robot move in that particular direction. As the robot moves new single percepts are 

generated, then combined into complex percepts, map mission percepts, match/mismatch/novelty 

percepts, etc. Using just the selected percepts produced in the mission-specific workspace 

(explicit content), the MCCM implemented in the core layer will issue a new context command, 

thus closing the explicit control loop. 

3.3 From Sensory Data to Qualia 

How the proposed CERA-CRANIUM framework can account for qualia? Adopting an 

engineering approach, as proposed by Haikonen (2008), we believe to inspect the world through 

explicit percepts that appear in the system as qualia. Consequently, conscious perception is not 

possible without qualia. In terms of CERA, lower layers provide the required mechanisms for 

sensory data acquisition, processing, composition, and selection, which take place covertly. Only 

a winning selection of complex or mission percepts is overtly available for explicit reasoning. 

These explicit percepts, although grounded and adapted to the reality thanks to the CERA 

underlying mechanisms, do not represent the real qualities of the outside world, but an impression 

created by the multi-layer sensory system. In short, the input of the core layer is not built upon 

external stimuli, but based on lower layers reactions to these stimuli. At this level, the functional 

role of explicit percepts and their associated CJ-indexes is to provide the required information to 
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create the illusion that they directly represent the outside world qualities. However, as pointed out 

by Haikonen (2008), the qualities of generated qualia do not necessarily match with physical 

world properties. 

CERA architecture is designed to integrate exteroceptive and proprioceptive sensing in such a 

way that J-indexes can be estimated for each percept as illustrated above. Thanks to the spatial 

localization properties derived from the j referent vectors, percepts can be processed as if they 

were located in the outside world. We argue that this ability to process percepts as if they were 

qualities of the outside world, instead of inspecting directly the sensory data, can be the base for 

the creation of qualia in the machine. For instance, the CERA implementation for the robot 

exploration task is able to build sonar single percepts out of sonar transducers range data. These 

percepts are representations of qualities of the outside world based on sonar sensor current 

operation parameters, robot position, and the actual range data (see Figure 15). 

 

 
Figure 15. Single sonar percept representation. 

4. Conclusions and Future Work 

In this work we have presented a framework that enables the comparative study of different 

cognitive models of consciousness. As illustrated in the robot exploration application scenario 

that has been analyzed, particular implementations of CERA layers can be combined in an 

instantiation of the proposed framework. Having different implementations of CERA layers 

would enable the development of experiments like the following: evaluation of the same MCCM 

in different environments, evaluation of the same MCCM in the same environment but using 

different agents and different missions, and comparative study of different MCCMs by 

confronting them to the same environment and mission (this would only require modifications in 

CERA core layer). 

The ultimate aim of these sorts of experiments is to discover what workspace modulation 

techniques and what cognitive models are best suited to produce conscious-like behaviors and 

rich adaptive perception. Furthermore, the proposed experimentation framework can be extended 

with classical artificial intelligence search and optimization approaches in order to either improve 

existing models or even generate completely new cognitive models of consciousness. 

In addition to the former considerations, another benefit to take into account is the existing 

decoupling between the control architecture itself and the physical or simulated agent being 

controlled. Moving from one particular agent to another would only imply to adapt CERA 

sensory-motor services and physical layers to new sensors and actuators, while keeping the rest of 

the architecture unaffected by the change. Obviously, if new sensor modalities are added that 

could be specifically used in the mission-specific cognitive processing, CERA mission-specific 
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layer would need to be enhanced with this additional capability. The same implication applies in 

analogous terms for new actuators and their associated agent physical abilities. 

Enhancing CERA-CRANIUM with flexible mechanisms for long-term memory and learning 

are the challenges we are currently facing. In order to have a noise-free and rich experimentation 

environment for the development of these cognitive capabilities we are currently developing an 

instantiation of CERA adapted for the control of video game characters (Arrabales et al. 2009b). 
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