Designing Human-like Video Game Synthetic Characters through Machine Consciousness

Raúl Arrabales, Agapito Ledezma and Araceli Sanchis

Computer Science Department Carlos III University of Madrid <u>http://Conscious-Robots.com/Raul</u>

Toward a Science of Consciousness 2009 PolyU, Hong Kong, 12th June 2009

➡ Contents

- Introduction
- Objectives
- Research Environment description
- Hypothesis and Ongoing Work
- Open problems
- Conclusions
- Questions

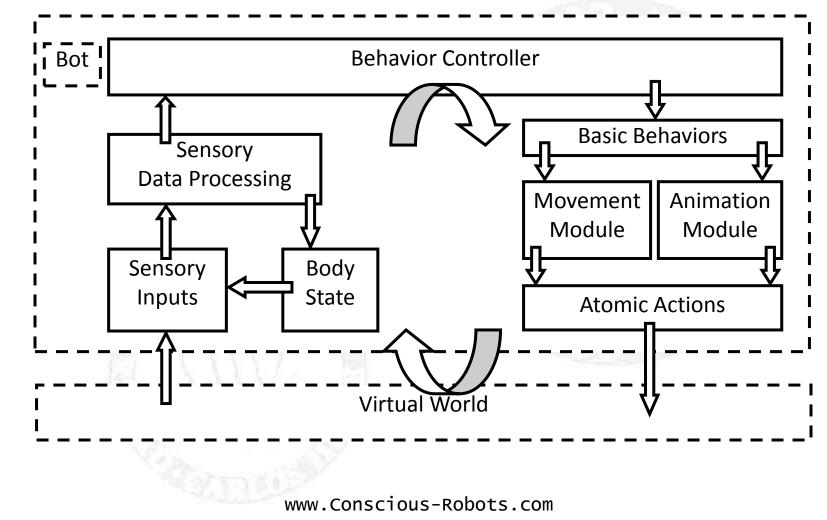
➡ Introduction

- Context:
 - Machine Consciousness Research.
- Experimentation domain:
 - First Person Shooter (FPS) video games.
- Working hypothesis:
 - To improve Human-like synthetic character design using cognitive theories of consciousness.

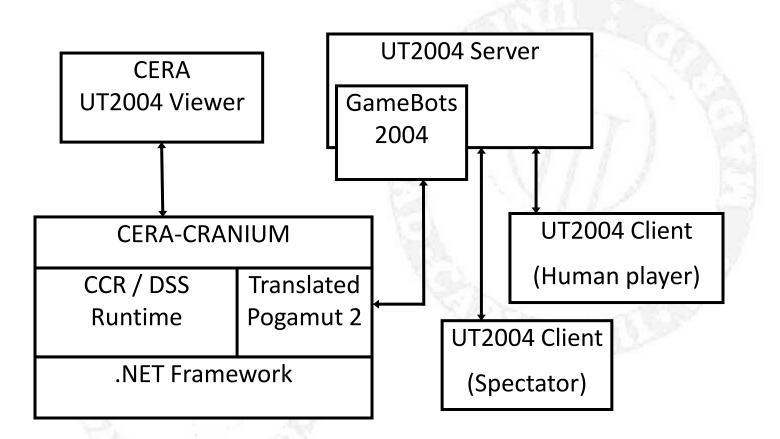
➡ A bit of History

From robotics to computer games:

Context (UTIII and UT2004)


Unreal® Tournament 2004 ©2004 Epic Games, Inc.

www.Conscious-Robots.com


Environment (I)

➡ Environment (II)

➡ Technologies

- Unreal Engine.
- Unreal Script.
- GameBots.
- Pogamut 2.
- Robotics Developer Studio.
- CERA-CRANIUM.

Main Objectives

To understand how cognitive skills associated with consciousness can be combined.

To understand what does human-like means.

➡ Other objectives

- To test Machine Consciousness models.
- To explore the role of qualia in behavior generation.
- To develop practical measures of consciousness based on behavior.
- To develop more engaging synthetic characters.

Video games as research tools

Benefits:

- Practical experimentation environment.
- Computationally affordable and rich.
- Easy assessment of global agent behavior.
- Focus on high-level control.
- Human (virtual) interaction.

Video games as research tools

Drawbacks:

- Lack of real physical world interaction.
- Results cannot be directly applied to robotics or other domains.
- Noise and uncertainty are generally ignored.
- Prone to misinterpretations.

Research Approach

 Bots controlled by flexible cognitive architecture to explore the integration of cognitive skills.

But, How?
 Using consciousness as inspiration.

➡ Cognitive Skills (0)

First step: Identifying cognitive skills associated with consciousness.

Is this a reductionist approach?
Does this mean that phenomenal aspects are ignored?

➡ Cognitive Skills (I)

- Executive Function
 - High level control for maintaining and implementing a goal.
 - Attention.
 - Set Shifting.
 - Planning.
 - Coordination.

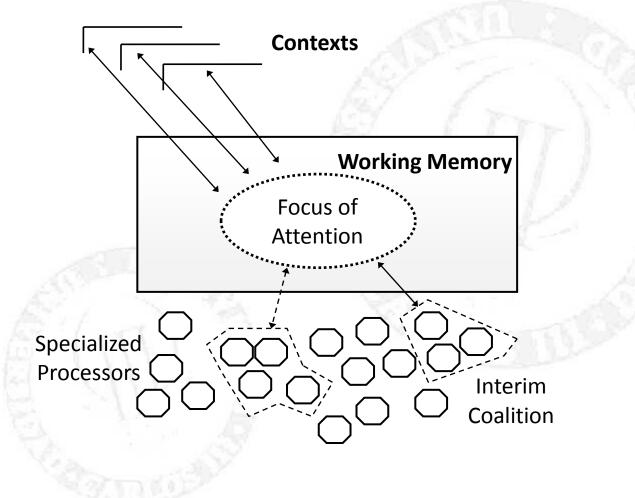
➡ Cognitive Skills (II)

Emotions

- Emotions as low level reactions.
- Feelings as representation of the former.
- Conscious feelings as second order representations of the relation between the self and feelings.

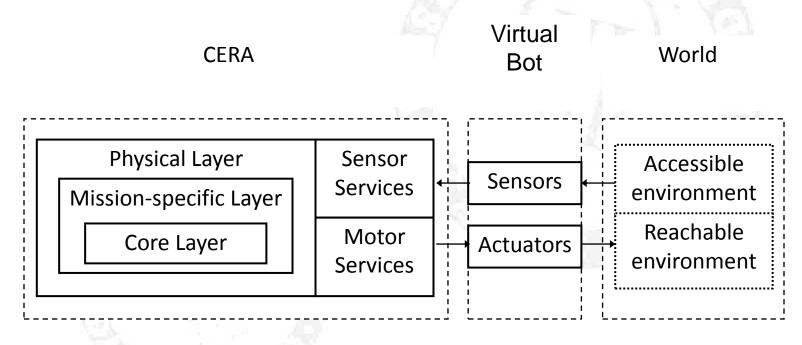
Cognitive Skills (III)

- Theory of Mind (Lewis, 2003)
 - "I know" (proprioceptive sensing).
 - "I know I know" (self-consciousness).
 - "I know you know" (inter-subjectivity).
 - "I know you know I know" (development of Machieavelian strategies).

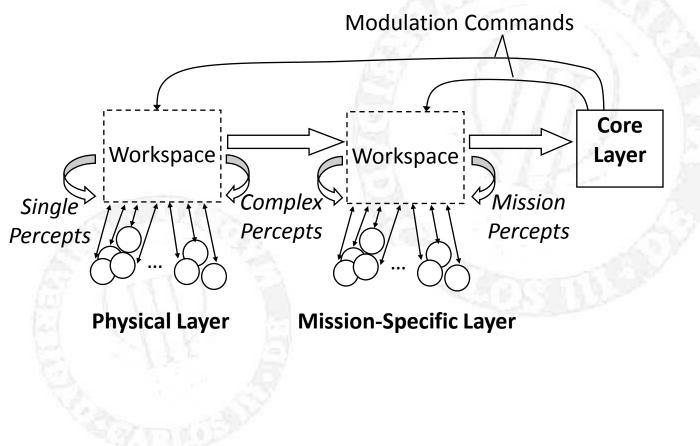

How to integrate everything?

- Using a cognitive architecture...
 - But, how the different skills can be combined effectively?
- Let's use consciousness as the source of design inspiration.

Computational Model



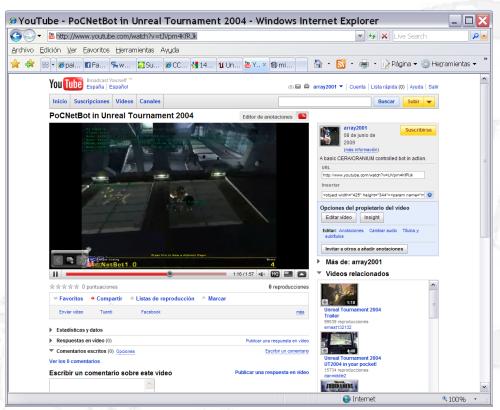
Cognitive Architecture


CERA-CRANIUM

➡ CERA-CRANIUM (II)

- Core Layer
 - Goals and meta-goals (keep positive emotional state).
 - Long term memory.
 - Learning mechanisms.
 - Model of self.
 - Models of others.

What should be done first?


What makes the agent behave humanlike?

 ConsScale proposes a developmental path.

➡ Small Demo (video)

http://www.youtube.com/watch?v=tJVpm4KfRJk

www.Conscious-Robots.com

Open Problems

- Accurately testing for consciousness.
- Lack of accurate verbal report.
- Practical definition of human-like behavior.
- Judging protocol.
- Other problem domains.

➡ Conclusions (I)

- When the judge is just a passive spectator bots are more likely to appear as humans.
- When the judge participates in the game, interaction is better assessed, and bots look less smart.
- Some human players don't pass the Turing test.

➡ Conclusions (II)

- "Human-like" versus "Conscious-like".
 - To improve believability (*it is always a "ToM game"*).
- Very good performing bots are unlikely to be considered human.
- Poorly performing bots are unlikely to be considered human.

➡ Conclusions (III)

- Current state of the art
 - Multiplayer online games are more appealing because opponents are humanlike.
 - Current Synthetic characters are not human-like (see 2k BotPrize 2008 contest).

➡ Conclusions (IV)

 Considering fixed repertories of behaviors or isolated cognitive skills doesn't seem to be a good approach.

We argue that using the "consciouslike" approach is helpful in the quest for human-like characters.

→ Future Work

"Turing Test for Bots" 2K BotPrize Competition 2009.

- IEEE Symposium on Computational Intelligence.
- September. Milan. Italy.
- Challenge: "narrative bot".

➡ Related talks

- CERA-CRANIUM: A Test Bed for Machine Consciousness Research.
 - International Workshop on Machine Consciousness.
- Establishing a Roadmap and Metrics for Conscious Machines Development.
 - 8th IEEE International Conference on Cognitive Informatics.

Thank you www.Conscious-Robots.com