CERA-CRANUM: A Test Bed for Machine Consciousness Research

Raúl Arrabales, Agapito Ledezma and Araceli Sanchis

Computer Science Department
Carlos III University of Madrid
http://Conscious-Robots.com/Raul

International Workshop on Machine Consciousness 2009
PolyU, Hong Kong, 14th June 2009
Contents

- Introduction and objectives.
- Related work.
- Objectives.
- CERA-CRANIUM.
- Experimentation settings.
- Example of application.
- Conclusions.
Introduction (1)

- Theories of consciousness
 - Philosophical or psychological background.
 - Metaphorical descriptions.

- Need to bridge the gap between theories and implementation.
Introduction (II)

- Cognitive theories of consciousness
 - Global Workspace Theory (Baars, 1997).
 - Multiple Draft Model (Dennett, 1991).

- Inspiration for the design of a partial computational model of consciousness.
Introduction (III)

- Common ground
 - Non-unitary mechanisms producing the unity of self.
 - In other words, conscious contents emerge as a result of competition/collaboration (Minsky, Dennett, Hofstadter, Baars, Shanon).
Introduction (IV)

- Objectives
 - To understand how cognitive skills associated with consciousness can be integrated effectively.
 - To test different machine consciousness models.
Introduction (V)

- Functionalism:

 - Is this a reductionist approach?
 - Does this mean that phenomenal aspects are ignored?
Related work (I)

- IDA and LIDA (Ramamurthy et al., 2006).

- Computational Agent Framework for Consciousness (Moura & Bonzon, 2004).

- CERA-CRANIUM (Arrabales et al., 2007, 2008).
Related work (II)

- Common denominator:
 - Shared workspace and specialized processors.

- Different approaches in terms of:
 - Architecture.
 - Problem domain.
 - Perceptual flow.
 - Decision taking.
 - Modulation.
Objectives

- Experimentation platform.
- Test bed for high level cognitive approaches.
- Generic but configurable cognitive architecture.
CERA-CRANIUM (I)

CERA-CRANIUM Provides:

- Mechanisms for specialized processors
 - Creation,
 - Association,
 - Combination,
 - Competition.

- Mechanisms to regulate the former processes.
CERA-CRANIUM (II)

- **CERA**: layered control architecture.

- **CRANIUM**: runtime tool for the creation and management of high amounts of parallel processes in shared workspaces.

www.Conscious-Robots.com
CERA-CRANIUM (III)

- CERA: layered design
 - Sensorimotor services layer.
 - Physical layer.
 - Mission-specific layer.
 - Core layer.
Different levels of description
CERA-CRANI UM (V)

- CRANI UM
 - Blackboard
 - Pandemonium
CERA-CRANIUM (VI)

- Perceptual flow:
 - Sensory data.
 - Single percepts.
 - Complex percepts.
 - Mission percepts.
CERA-CRANI UM (VI bis)

Knowledge representation
CERA-CRANIUM (VI I)

- Behavior generation:
 - Mission behaviors.
 - Simple behaviors.
 - Single actions.
 - Motor controller commands.
CERA-CRANIUM (VI I bis)

Action generation

www.Conscious-Robots.com
CERA-CRANIUM (VIII)

- Bottom-up flow

Diagram:

- Sensors
- CERA S-M
- CERA Physical Layer
- CRANIUM Workspace
- Single Percepts
- Sensor Preprocessors
- Complex Percepts
- Percept Aggregators
- Mission Percepts
- Specialized Processors
- CERA M-S Layer
- CERA Core Layer

www.Conscious-Robots.com
CERA-CRANIUM (IX)

- Top-down flow
CERA-CRANIUM (X)

- CRANIUM processor types
 - Sensor preprocessors
 - Raw sensory data \rightarrow single percepts
CERA-CRANIUM (XI)

- CRANIUM processor types

 - Action preprocessors
 - Atomic actions → Single actions.
CERA-CRANIUM (XII)

- CRANIUM processor types
 - Percept aggregators
 - Single percepts \rightarrow complex percepts.
 - Complex percepts \rightarrow complex percepts.
CERA-CRANIUM (XIII)

CRANIUM processor types

- Reactive processors
 - Single percept → simple behavior.
 - Complex percept → simple behavior.
CERA-CRANIUM UM (XIV)

- CRANIUM UM processor types
 - Action planners
 - Simple behavior → atomic actions.
CERA-CRANIUM UM (XV)

CRANIUM UM processor types

- Sensory predictors
 - Single percepts \rightarrow mismatch complex percept.
 - Complex percepts \rightarrow mismatch complex percept.

www.Conscious-Robots.com
CERA-CRANIUM (XVI)

- Multi-level concurrent feedback loops
CERA-CRANIUM (XVII)

- Physical level feedback loops
CERA-CRANIUM (XVIII)

- Software architecture

```
CERA Physical
CERA Sensory-Motor Services
DSS
CCR
.Net Framework

DSSP
CRANIUM

CERA Mission-specific
DSS
CCR
.Net Framework

DSSP
CERA Core
DSS
CCR
.Net Framework

Agent sensory-motor machinery

MCCM Configuration

www.Conscious-Robots.com
```
CERA-CRANIUM (XVIII bis)

- Software architecture

```
<table>
<thead>
<tr>
<th>Workspace</th>
<th>Workspace</th>
<th>Core Layer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single Percepts</td>
<td>Complex Percepts</td>
<td>Mission Percepts</td>
</tr>
<tr>
<td>Physical Layer</td>
<td>Mission-Specific Layer</td>
<td></td>
</tr>
<tr>
<td>Modulation Commands</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

www.Conscious-Robots.com
CERA-CRANIUM (XI X)

- The proposed cognitive architecture is focused on:
 - Selecting next content of conscious perception.
 - Selecting next action to be executed.
Experimentation settings

- Variables:
 - Cognitive model of consciousness.
 - Agent (physical or simulated).
 - Problem domain and mission.
 - Environment (physical or simulated).
Applications

- Current applications:
Application example (1)

- Autonomous exploration and mapping
Application example (II)

- Autonomous exploration and mapping.
Application example (III)

- Percepts (bumpers).
Application example (IV)

- Single percept (bumper).

![Diagram showing bumper perceptions with left-j referent, j referent, and right-j referent with an impact event and N(δS_j)]
Application example (V)

- Complex percept (bumper).

- Left-j referent
- Right-j referent

Impact

\[M(S_{Cl}) \]
Application example (VI)

- CERA Core Layer Design.

Cognitive Model

Meta-goals

Rule-based system

Meta-goals

Current Model State

Workspace Commands

$M(S_{Cj})$

Mission Percepts, Complex percepts, Mismatch Percepts, Novelty Percepts, ...

Core Layer

M-S Layer

Physical Layer

CRANIUM Workspace

CRANIUM Workspace

Contextual J-Index Calculation

www.Conscious-Robots.com
Conclusions (I)

- From sensory to qualia?
Conclusions (II)

- Different implementations of CERA layers.

- Explore workspace modulation techniques.
Thank you