
The awakening of conscious bots:
Conscious-Robots team, winner of the 2K BotPrize 2010

contest, explains how their bot is designed.

by Raúl Arrabales and Jorge Muñoz

Most of current efforts in the development of believable bots – bots that behave like human

players – are based on classical AI techniques. These techniques are based on relatively old

principles, which nevertheless are being progressively improved or wisely adapted increasing

their performance in order to satisfy new game requirements. Taking a different perspective, the

approach that we adopted for the design of our bot (CC-Bot2) was rather opposed to this trend.

Specifically, we implemented a computational model of the Global Workspace Theory (Baars,

1988), a kind of shared memory space where different agents – that we call specialized

processors - can collaborate and compete with each other dynamically (see Figure 1). We

believe that applying new techniques from the field of Machine Consciousness might also

provide good results, even in the short term.

In this article we briefly describe the design of CC-Bot2, the winning Unreal Tournament bot

developed by the Conscious-Robots team for the third edition of the 2K BotPrize. The BotPrize

competition is a version of the Turing test adapted to the domain of FPS video games

(Hingston, 2009). The ultimate goal of the contest is to develop a computer game bot able to

behave the same way humans do. Furthermore, a bot would be considered to pass the Turing

test (in this particular domain) if it is undistinguishable from human players.

Figure 1. Global Workspace Model.

1. CERA-CRANIUM Cognitive Architecture and CC-Bot2

As a result of our research line on Machine Consciousness we have developed a new cognitive

architecture called CERA-CRANIUM (Arrabales et al. 2009), which has been the basis for the

development of CC-Bot2 (CERA-CRANIUM Bot 2). CERA-CRANIUM is a cognitive architecture,

designed to control autonomous agents, like physical mobile robots or Unreal Tournament bots,

and based on a computational model of consciousness. The main inspiration of CERA-

CRANIUM is the Global Workspace Theory (Baars, 1988). CC-Bot2 is a Java implementation of

the CERA-CRANIUM architecture specifically developed for the 2K BotPrize competition.

CERA-CRANIUM consists of two main components (see Figure 2):

 CERA, a control architecture structured in layers, and

 CRANIUM, a tool for the creation and management of high amounts of parallel

processes in shared workspaces.

As we explain below, CERA uses the services provided by CRANIUM with the aim of generating

a highly dynamic and adaptable perception processes orchestrated by a computational model of

consciousness.

Specialized
Processors

Working Memory

Focus of
Attention

Contexts

Interim
Coalition

Figure 2. Overview of CERA-CRANIUM architecture.

Basically, in terms of controlling a bot, CERA-CRANIUM provides a

mechanism to synchronize and orchestrate a number of different

specialized processors that run concurrently.

These processors can be of many kinds, usually they are detectors for given sensory

conditions, like the “player approaching detector” processor, or they are behavior generators,

like the “run away from that bully” processor.

1.1 CERA

CERA is a layered cognitive architecture designed to implement a flexible control system for

autonomous agents. Current definition of CERA is structured in four layers (see Figure 3):

sensory-motor services layer, physical layer, mission-specific layer, and core layer. As in

classical robot subsumption architectures, higher layers are assigned more abstract meaning;

however, the definition of layers in CERA is not directly associated to specific behaviors.

Instead, they manage any specialized processors that operate on the sorts of representations

that are handled at that particular level, i.e. physical layer deals with data representations

closely related to raw sensory data, while mission layer deals with more high-level task-oriented

representations.

CERA sensory-motor services layer comprises a set of interfacing and communication

services which implement the required access to both sensor readings and actuator commands.

These services provide the physical layer with a uniform access interface to agent’s physical (or

simulated) machinery. In the case of CC-Bot2, the CERA sensory-motor layer is basically an

adaptation layer to Pogamut 3.

CERA Physical

Agent

CRANIUM

Sensors Actuators

CERA Mission

CRANIUM

CERA Core

CERA physical layer encloses agent’s sensors and actuators low-level representations.

Additionally, according to the nature of acquired sensory data, the physical layer performs data

preparation and preprocessing. Analogous mechanisms are implemented at this level with

actuator commands, making sure for instance that command parameters are within safety limits.

The representation we have used for sensory data and commands in CC-Bot2 physical layer is,

in most of the cases, actually that of Pogamut 3, like “player appeared in my field of view” or “I

am being damaged”.

CERA mission-specific layer produces and manages elaborated sensory-motor content

related to both agent’s vital behaviors and particular missions (in the case of a deathmatch

game the mission is relatively clear and simple). At this stage single contents acquired and

preprocessed by the physical layer are combined into more complex pieces of content, which

have some specific meaning related to agent’s goals (like “this player is my enemy” or “enemy x

is attacking me”). The mission-specific layer can be modified independently of the other CERA

layers according to assigned tasks and agent’s needs for functional integrity.

CERA core layer, the highest control level in CERA, encloses a set of modules that perform

higher cognitive functions. The definition and interaction between these modules can be

adjusted in order to implement a particular cognitive model. In the case of CC-Bot2, the core

layer contains the code for the attention mechanism (many other modules could be added in the

future). The main objective of these core modules is to regulate the way CERA lower layers

work (the way specialized processors run and interact with each other).

Physical and mission-specific layers are characterized by the inspiration on cognitive theories of

consciousness, where large sets of parallel processes compete and collaborate in a shared

workspace in the search of a global solution. Actually, a CERA controlled agent is endowed with

two hierarchically arranged workspaces which operate in coordination with the aim to find two

global and interconnected solutions: one is related to perception and the other is related to

action. In short, CERA has to provide an answer for the following questions continuously:

 What must be the next content of agent’s conscious perception?

 What must be the next action to execute?

Bot

Physical Layer

Mission-specific Layer

Core Layer

Sensors

Actuators

CERA Game Environment

Sensory-accessible

environment

Reachable

environment

Sensor

Services

 Motor

Services

Figure 3. CERA cognitive architecture layered design.

Typical agent control architectures are focused on the second question while neglecting the first

one. Here we argue that a proper mechanism to answer the first question is required in

order to successfully answer the second question in a human-like fashion. Anyhow, both

questions have to be answered taking into account safety operation criteria and the mission

assigned to the agent. Consequently, CERA is expected to find optimal answers that will

eventually lead to human-like behavior. As explained below, CRANIUM is used for the

implementation of the workspaces that fulfill the needs established by the CERA architecture.

1.2 CRANIUM

CRANIUM provides a subsystem in which CERA can execute many asynchronous but

coordinated concurrent processes. In the CC-Bot2 implementation (Java), CRANIUM is based

on a task dispatcher that dynamically creates a new execution thread for each active processor.

A CRANIUM workspace can be seen as a particular implementation of a pandemonium, where

daemons compete with each other for activation. Each of these daemons or specialized

processors is designed to perform a specific function on certain types of data. At any given time

the level of activation of a particular processor is calculated based on a heuristic estimation of

how much it can contribute to the global solution currently sought in the workspace. The

concrete parameters used for this estimation are established by the CERA core layer. As a

general rule, CRANIUM workspace operation is constantly modulated by commands sent from

the CERA core layer.

In CC-Bot2 we use two separated but connected CRANIUM workspaces integrated within the

CERA architecture. The lower level workspace is located in the CERA physical layer, where

specialized processors are fed with data coming from CERA sensor services (Pogamut). The

second workspace, located in the CERA mission-specific layer, is populated with higher-level

specialized processors that take as input either the information coming from the physical layer

or information produced in the workspace itself (see Figure 4). The perceptual information flow

is organized in packages called single percepts, complex percepts, and mission percepts.

In addition to the bottom-up flow involving perception processes, a top-down flow takes place

simultaneously in the same workspaces in order to generate bot’s actions. Physical layer and

CERA

Core

Layer

CERA M-S Layer CERA Physical Layer

Sensor

Service

Sensor
Service

Single

Percepts

…

CRANIUM

Workspace

Complex

Percepts

…

CRANIUM

Workspace

Mission

Percepts

Sensor
Preprocessors

…

Specialized

Processors

Sensor

Service

CERA S-M Pogamut

…

Percept

Aggregators

Figure 4. CERA-CRANIUM bottom-up flow: perception.

mission-specific layer workspaces include single actions (directly translated into Pogamut

commands), simple behaviors, and mission behaviors (see Figure 5).

One of the key differences between CERA-CRANIUM bottom-up and top-down flows is that

while percepts are being iteratively composed in order to obtain more complex and meaningful

representations, high level behaviors are iteratively decomposed until a sequence of atomic

actions is obtained. Top-down flow could be considered, to some extent, to be equivalent to

behavior trees, in the sense that behaviors are associated to given contexts or scopes.

However, the way CERA-CRANIUM selects the next action is quite different, as current active

context is periodically updated by the CERA Core layer. At the same time, the active context is

calculated based on input from the sensory bottom-up flow. Having an active context

mechanism implies that out of the set of possible actions that could be potentially executed; only

the one which is located closer to the active context will be selected for execution. In the next

subsection, we describe how the behavior of the agent is generated using this approach.

1.3 Behavior generation

Having a shared workspace, where sensory and motor flows converge, facilitates the

implementation of the multiple feedback loops required for adapted and effective behavior. The

winning simple behavior is continuously confronted to new options generated in the physical

layer, thus providing a mechanism for interrupting behaviors in progress as soon as they are no

longer considered the best option. In general terms, the activation or inhibition of perception and

behavior generation processes is modulated by CERA according to the implemented cognitive

model of consciousness. In other words, behaviors are assigned an activation level according to

their distance to the active context in terms of the available sensorimotor space. Only the most

active action is the one executed at the end of each “cognitive cycle”.

Distance to a given context is calculated based on sensory criteria like relative location and

time. For instance, if we have two actions: Action A: “shoot to the left” and Action B: “shoot to

the right”, and an active context pointing to the left side of the bot (because there is an enemy

there), action A will be most likely selected for execution, and action B will be either discarded or

kept in the execution queue (while it is not too old).

CERA

Core

Layer

CERA M-S Layer CERA Physical Layer

Motor

Service

Motor
Service

Single

Actions

…

CRANIUM

Workspace

Simple

Behaviors

…

CRANIUM

Workspace

Mission

Behaviors

Action
Preprocessors

…
Specialized
Processors

Motor

Service

CERA S-M Pogamut

…

Action

Planners

Figure 5. CERA-CRANIUM top-down flow: behavior generation.

 Figure 6 shows a schematic representation of typical feedback loops produced in the CERA

architecture. These loops are closed when the consequences of actions are perceived by the

bot, triggering adaptive responses at different levels.

Curve (a) in Figure 6 represents the feedback loop produced when an instinctive reflex is

triggered. Figure 6 curve (b) corresponds to a situation in which a mission-specific behavior is

being performed unconsciously. Finally, curve (c) symbolizes the higher level control loop, in

which a task is being performed consciously. These three types of control loops are not mutually

exclusive; in fact, same percepts will typically contribute to simultaneous loops taking place at

different levels.

CRANIUM workspaces are not passive short-term memory mechanisms. Instead, their

operation is affected by a number of workspace parameters that influence the way the

pandemonium works. These parameters are set by commands sent to physical and mission-

specific layers from the CERA core layer. In other words, while CRANIUM provides the

mechanism for specialized functions to be combined and thus generate meaningful

representations, CERA establishes a hierarchical structure and modulates the competition and

collaboration processes according to the model of consciousness specified in the core layer.

This mechanism closes the feedback loop between the core layer and the rest of the

architecture: core layer input (perception) is shaped by its own output (workspace modulation),

which in turn determines what is perceived.

2. The CC-Bot2 Implementation

In the following table some of the main specialized processors implemented in CC-Bot2 are

briefly described (note that a number of processors performing the very same task but using

different techniques might coexist in the same workspace).

Specialized Processor CERA
Layer

Task

AttackDetector Physical To detect conditions compatible with enemy attacks (health level decreasing,
enemy fire, etc.).

AvoidObstacle Physical To generate a simple avoiding obstacle behavior.

CERA M-S Layer CERA Core Layer CERA Physical Layer CERA S-M WORLD

(a)

(b)

(c)

Figure 6. Different feedback loops produced in the CERA-CRANIUM.

BackupReflex Physical To generate a simple backup movement in response to an unexpected collision.

ChasePlayer Mission To generate a complex chasing player behavior.

EnemyDetector Physical To detect the presence of an enemy based on given conditions, like previous
detection of an attack and presence of other players using their weapons.

GazeGenerator Physical To generate a simple gaze movement directed towards the focus of attention.

JumpObstacle Physical To generate a simple jump movement in order to avoid an obstacle.

KeepEnemiesFar Mission To generate a complex run away movement in order to maximize the distance to
detected enemies.

LocationReached Physical To detect if bot has reached the spatial position marked as goal location.

MoveLooking Physical To generate a complex movement combining gaze and locomotion.

MoveToPoint Physical To generate a simple movement towards a given location.

ObstacleDetector Physical To detect the presence of an obstacle (which might prevent the bot to follow her
path).

RandomNavigation Physical To generate a complex random wandering movement.

RunAwayFromPlayers Mission To generate a complex movement to run away from certain players.

SelectBestWeapon Mission To select the best weapon currently available.

SelectEnemyToShoot Mission To decide who is the best enemy to attack to.

In our current implementation, specialized processors are created programmatically (see

sample code below), and they are also assigned dynamically to their corresponding CERA

layer. It is our intention to create a more elegant mechanism for the programmer to define the

processors layout (configuration text file or even a GUI).

 […]

 // ** ATTACK DETECTOR *

 // Generates a BeingDamaged percept every time the health level decreases

 _CeraPhysical.RegisterProcessor(new AttackDetector());

 // ** OBSTACLE DETECTOR **

 // Generates a Obstacle single percept if there is any obstacle in the

 // direction of the movement

 _CeraPhysical.RegisterProcessor(new ObstacleDetector());

 // ** EMEMY DETECTOR **

 // Generates a Enemy Attacking complex percept every time the bot is

 // being damaged and possible culprit/s are detected.

 _CeraMission.RegisterProcessor(new EnemyDetector());

 […]

3. Conscious-Robots Bot in action

The following is an excerpt of a typical flow of percepts that ultimately generates the bot’s

behavior (see Figure 7):

1. The processor EnemyDetector detects a new enemy, and creates a new “enemy detected”

percept.

2. The “enemy detected” percept is in turn received by the SelecEnemyToShoot processor,

which is in charge of selecting the enemy to shoot. When an enemy is selected, the

corresponding fire action is generated.

3. Two processors receive the fire action, one in charge of aiming at the enemy and shoot, and

other that creates new movement actions to avoid enemy fire.

4. As the new movement actions have more priority than actions triggered by other processors,

like the RandomMove processor, these actions are more likely to be executed.

This is a very simple example that how the bot works. However, it is usual to have much more

complex scenarios in which several enemies are attacking the bot simultaneously, and the

selected target might be any of them. In these cases, the attention mechanism plays a key role.

CERA-CRANIUM implements an attention mechanism based on active contexts. Percepts that

are closer to currently active context are more likely to be selected and further processed. This

helps maintaining more coherent sequences of actions.

The following video shows the bot in action.

http://www.youtube.com/watch?v=9pmYPROqoxM

4. Future Work

CC-Bot2 is actually a partial implementation of the CERA-CRANIUM model. Our Machine

Consciousness model includes much more cognitive functionality that is unimplemented so far.

It is our aim to enhance the current implementation with new features like a model of emotions,

episodic memory, different types of learning mechanisms, and even a model of the self. After a

hard work, we expect CC-Bot3 to be a much more human-like bot. We also plan to use the

same design for other games like TORCS or Mario.

Figure 7. Simplified scheme of percept and action flow in CERA-CRANIUM.

UT2004

Game

Workspace Single

Percepts

Simple

Behavior

Controllers

Events!

Sensors

BOT

(Pogamut)

CERA

Physical

Layer

Actions

Workspace

Action
Planner

Select Enemy

to Shoot

CERA Mission

Layer

Enemy Detected

Percepts

Enemy

Detector

Other

Percepts

Enemy

Percepts

Aim and Fire actions

http://www.youtube.com/watch?v=9pmYPROqoxM

Although CC-Bot2 could not completely pass the Turing test, it achieved the highest humanness

rating (31.8%). As of today, the Turing test level intelligence has never been achieved by a

machine. There is still a long way to go in order to build artificial agents that are clever enough

to parallel human behavior. Nevertheless, we think we are working in a very promising research

line to achieve this ambitious goal.

Acknowledgements

We wish to thank Alex J. Champandard for his helpful suggestions and comments on the drafts

of this article.

References

Philip Hingston. A Turing Test for Computer Game Bots, IEEE Transactions on Computational Intelligence and

AI In Games, Vol. 1, No. 3, pp 169-186, September 2009.

Arrabales, R. Ledezma, A. and Sanchis, A. "CERA-CRANIUM: A Test Bed for Machine Consciousness

Research". International Workshop on Machine Consciousness 2009. Hong Kong. June 2009.

Baars, B.J. 1988. A Cognitive Theory of Consciousness: Cambridge University Press (About GWT).

Arrabales, R. Ledezma, A. and Sanchis, A. "Towards Conscious-like Behavior in Computer Game Characters",

in Proceedings of the IEEE Symposium on Computational Intelligence and Games 2009 (CIG-2009) pp. 217-224.

ISBN 978-1-4244-4815-9.

Muñoz, J., Arrabales, R. et al., “2K BotPrize 2010 winner bot: steps toward passing the Turing test”. Forthcoming.

http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=5247069#_blank
javascript:void(0)
http://www.conscious-robots.com/raul/papers/Arrabales_IWMC2009_v26.pdf#_blank
http://www.conscious-robots.com/raul/papers/Arrabales_IWMC2009_v26.pdf#_blank
http://www.conscious-robots.com/en/conscious-machines/theories-of-consciousness/global-workspace-theory.html
http://www.conscious-robots.com/raul/papers/Arrabales_CIG09.pdf#_blank

