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Abstract: An autonomous robot is usually expected to per-
form its assigned task in complex and unstructured environ-
ments, where the high amount of sensory information acquired
by sensors cannot be entirely processed in real-time. Like in
living organisms, an attention mechanism is required in order
to select most relevant stimuli from the environment. The out-
come of this selection process comprises all the information
that will be available to the control system of the robot. There-
fore, an optimal operation of the attention mechanism is neces-
sary for robot mission success. In this work, we present a novel
cognitive architecture which permits the implementation and
integration of efficient attention mechanisms for autonomous
robots. Additionally, the application of this approach to the do-
main of unknown environment exploration is discussed and re-
sults are analyzed. Specifically, the influence of attention in the
generation of efficient robot behavior is demonstrated.
Keywords: attention, cognitive modeling, intelligent agents.

1. Introduction

Attention is a cognitive or mechanical process developed in liv-
ing beings as a mean to improve critical stimuli response time.
Attention mechanisms have evolved in nature as an adapta-
tion to complex and highly dynamic real world environments.
The same sort of mechanism is also a clear need in the design
of artificial autonomous agents. The aim of artificial attention
mechanisms is twofold: on one hand, sensors have to be di-
rected to the most interesting sources of information; on the
other hand, the available sensory information has to be filtered
in order to prevent unnecessary information processing. As a
result of the application of the attention mechanism, the be-
havior of the robot is optimized. From the point of view of
time, the robot is able to react faster to mission-related stimuli
because processing resources are not wasted with non mission-
related stimuli, which are ignored. From the point of view of
space, the robot will only head towards areas of interest for its
assigned task.

A significant number of works exist on attention, typically
in the field of artificial vision [7], but also applied to au-
tonomous mobile robots [5]. These works are usually inspired
in neurobiological mechanisms like foveation and eye saccades
[9]. However, in the present work we have considered some se-
lected cognitive theories of consciousness as the main source
of inspiration for the design of an artificial attention system for
mobile robots. Although the proposed approach is currently
being tested in the domain of unknown environment explo-

ration, our aim is to design a multimodal attention mechanism
flexible enough to be applied to different problem domains.

The aforementioned benefits can only be effectively demon-
strated if the attention mechanism is properly integrated into
the control architecture of the robot. In this work, we present
a cognitive architecture for the control of autonomous robots
which is inspired in psychological models of consciousness,
and therefore exhibit a natural integration of cognitive pro-
cesses like attention.

In section 2 we briefly describe the computational model of
consciousness that we have implemented and how the artifi-
cial attention mechanism integrates within it. Then, section 3,
covers the software architecture and design parameters in de-
tail. In section 4, the experimental design and obtained results
are discussed. Finally, we conclude in section 5 with an analy-
sis of artificial attention benefits under the light of preliminary
results and potential applications.

2. Computational Models of Consciousness and
Attention

From the broad range of most established scientific theories
of consciousness [3], we have focused on those which can
effectively be translated into computational models. Further-
more, we have adopted a pragmatic machine consciousness
approach, identifying the functional aspects of consciousness
and using main psychological models as the inspiration for
a practical implementation. As in Minsky’s Society of Mind
[10], a key feature common to most relevant theories of con-
sciousness is the consideration of a large set of specialized
processors or agents running concurrently in our brains. These
small processors have evolved to perform highly specific tasks.
Even though these processors are completely mindless, intelli-
gence and consciousness emerge from their interrelations. A
model for the organization and interaction of these proces-
sors called Reasoning Consciousness Model has been defined,
which establishes a framework for the cooperation and com-
petition of specialized processors [1]. The main sources of
inspiration for such a framework are the Multiple Draft The-
ory (MDT) [6] and the Global Workspace Theory (GWT) [4].
From a purely functional perspective, both theories argue that
consciousness emerges from dynamic coalitions of processors.
Although these theories do not cover the actual implemen-
tation of the required underlying mechanisms, they provide
metaphors that characterize the way processors collaborate and
compete.
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Fig. 1. Multiple Draft Theory and Global Workspace Theory

A deep comparison between MDT and GWT is out of the
scope of the present paper. However, as they are the main in-
spiration of the proposed model we will focus on the concrete
mechanisms that are used to implement their essential func-
tionality. According to MDT, at any given time a coalition of
unconscious processors, a draft, wins the multiple draft com-
petition and the associated content becomes the conscious con-
tent of the mind (see Figure 1a). In GWT, consciousness is
illustrated with a theater spotlight simile that represents the
focus of consciousness directed by attention. Working mem-
ory takes the role of the scene, and behind scenes, unconscious
contextual systems form the events taking place in the spotlight
(see Figure 1b). There is a common denominator in both theo-
ries: the set of parallel processes collaborating and competing
in a common workspace in the search of a global solution. As
we explain below, this kind of frameworks can be implemented
following the same design principles as used in other similar
Al paradigms, like blackboard systems. Hofstadter’s Copycat
model is an illustrative example [8]. However, our implemen-
tation differs from classical blackboard systems and other cog-
nitive architectures like Copycat, as it is integrated with a real-
time control architecture and oriented to its direct application
in the field of autonomous robotics.

3. THE CERA/CRANIUM ARCHITECTURE

CERA (Conscious and Emotional Reasoning Architecture) is
a three-layer software architecture that allows the integration
of cognitive components for autonomous agent control [2]
(see Figure 2). CERA Physical Layer implements agent spe-
cific sensorimotor low-level control. CERA Instantiation Layer
encloses the mission specific representation and processing.
Finally, the CERA Core Layer implements a computational
model of consciousness which includes several modules that
represent different cognitive processes. CERA has been de-
signed to work as a flexible test-bed for testing different cog-
nitive processes and their interactions. Therefore, each module
in the CERA Core Layer can be independently activated or de-
activated. The discussion and results presented in this work are
mostly related with one of these processes: the attention mech-
anism.

The computational model of consciousness implemented
in CERA determines how the cognitive processes in the Core
Layer interact with each other, and more significantly here,
how these modules influence the way the lower layers work.
Basically, the functional model of consciousness that we have
implemented allows the attention module to send real-time
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Fig. 2. CERA Architecture Layers

commands from CERA Core Layer to lower layers, thus
modifying the processes of sensory information representa-
tion (perception) and next action selection (behavior). In other
words, the attention module produces a cognitive bias within
the CERA architecture (see Figure 3).
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Fig. 3. Attentional Bias

CRANIUM (Cognitive Robotics Architecture Neurologi-
cally Inspired Underlying Manager) provides a framework in
which CERA can execute thousands of asynchronous but co-
ordinated concurrent processes [1]. It is actually inspired by
the way the brain works from a systems level perspective,
where specialized regions process information coming form
the senses and/or other specialized regions. This scheme is
analogous to the pandemonium architecture described by Den-
nett [6], where many processors (or demons) compete with one
another for activation. The CRANIUM Workspace is a partic-
ular implementation of a pandemonium where each of these
processors is designed to perform a specific function. The level
of activation of processors is calculated based on a heuristic of
how much they can contribute to the global solution sought in
the workspace. In the current design we use two CRANIUM
Workspaces: the first one is located in the CERA Physical
Layer where specialized processors are fed with information
coming from the sensors, the second workspace is located in
the CERA Instantiation Layer and its processors are fed with
more elaborated information coming from the Physical Layer
(See Figure 4).

The raw data coming from the sensors is initially processed
in the CERA Physical Layer by specific sensor preprocessors.
These preprocessors build single representations units called
Simple Percepts. These mono-modal percepts are composed of
sensor data plus other associated physical state that character-
izes the perceived stimulus. Basically, a time-stamp and rel-
ative position of the source of the percept are calculated and
packaged together with the sensor data in a Simple Percept
object. All simple percepts produced by sensor preprocessors
are submitted to the Physical CRANIUM Workspace, where
they become accessible to all the physical specialized proces-
sors. The processors located in the physical layer are able to
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Fig. 4. CRANIUM Workspaces

combine both different modality and same modality simple
percepts and build the so-called Complex Percepts, which are
more elaborated multi-modal representations of the physical
environment. The complex precepts generated in the physi-
cal workspace are both re-submitted to the same workspace
(so other processors can use it for further processing) and
also submitted to the CERA Instantiation Layer workspace.
An analogous process takes place in this higher level CRA-
NIUM Workspace. Complex percepts are processed by instan-
tiation layer processors and more elaborated mission-specific
representations are obtained. These new objects, called Mis-
sion Percepts, are both re-submitted to the same workspace for
further processing and submitted to the CERA Core Layer. Al-
though the same processing could be carried out using just one
workspace, we have decided to use two separate workspaces
in order to keep the independency between physical robot spe-
cific processors (Physical Layer) and mission specific proces-
sors (Instantiation Layer).

The cognitive functionality modules located in the core
layer receive this flow of elaborated perceptual information;
however they are not passive listeners. The way the lower lev-
els workspaces make available the data to the specialized pro-
cessors is modulated by commands sent from the CERA Core
Layer. Specifically, the attention module can send context com-
mands to the workspaces (WSCommands) indicating what sort
of information should be under the spotlight of the working
memory. Note that the CRANIUM Workspace also represents
the working memory (or short-term memory) of the robot,
where all the content available for reasoning is stored. The
contents that the (explicit) specialized processors can receive
are only those which are “illuminated” by the “spotlight” of
attention. In order to preserve robot physical safety and allow
physical level goals (“reflexes”) to be triggered when needed,
another class of specialized processor called implicit proces-
sor has been defined in the physical layer. Implicit proces-
sors receive all the simple percepts that they have subscribed
for, independently of the perceptual bias induced by the atten-
tion module. This mechanism allows an implicit monitoring
of robot status and promptly execution of higher priority low-
level goals.

The incremental composition of perception knowledge,
from raw sensory information to simple percepts, then com-
plex percepts, and finally mission percepts, is distributed
across the operation of the different specialized processors.
This composition is directed by processors activation, which
in turn is biased by attention. Each processor has an activation
function and a set of parameters that can be used to calculate
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Fig. 5. Simulated indoor office-like environment

the degree of membership to a given context. Although the
concept of context defined in the GWT is much broader, the
contexts we have used are typically defined using criteria es-
tablished by simple robot physical and mission goals. Basic
criteria are restrictions on the dimensions of time and space.
For instance, there could be a context for the concept of “now”,
which involves all the percepts contained in the workspaces
that have been marked with a time-stamp close enough to
CERA current internal time. Analogously, a context for the
concept of “far” can be easily defined in CERA/CRANIUM
having the processors to look for percepts whose relative po-
sition parameter is above a certain threshold. Additionally,
processors calculate their own activation level in terms of the
relevance of the percepts they are building to the current ac-
tive contexts. An example of the application of this approach
to the particular problem domain of navigation in unknown
environments is presented in the next section.

4. APPLYING ATTENTION TO NAVIGATION

The results presented in this paper are all obtained using a (real
and simulated) robotic base Pioneer 3-DX equipped with an
onboard computer, frontal and rear bumpers and a frontal sonar
ring. The eight frontal sonar transducers cover an angular range
of 196 degrees and are used to measure distances to obstacles
and map the surroundings of the robot.

In order to test the influence of our proposed artificial atten-
tion mechanism in the generation of optimal robot behavior we
have confronted our prototype to the problem of unknown en-
vironment exploration. Given a typical indoor office environ-
ment - and its corresponding computer-simulated version (see
Figure 5) - we have thoughtfully tested the performance of the
robot governed by CERA/CRANIUM. In order to specificaly
analyze the effects of the attention mechanism in the gener-
ated behavior, we have purposely neglected the typical local-
ization problems by configuring a perfect odometry simula-
tion. The following autonomous control strategies have been
implemented and tested in order to analyze the influence of the



attention mechanism in behavior features like path generation
and mapping efficiency:

1-Context Behavior. With the purpose of having a refer-
ence of poor behavior performance, a simple and random
non-attentional wander behavior has been analyzed. This non-
attentional behavior simply apply some physical level goals
(“reflexes”) to keep the robot away from obstacles. Basically,
no functionality from CERA Instantiation and Core layers
is used, and only one possible context is considered. In the
physical level workspace the specialized processors Nearest-
Obstacle-Processor and Possible-Impact-Processor play a key
role in the generation of this simple behavior (Figure 7 de-
scribes the typical outcome of this /-Context behavior in terms
of explored areas and followed path).

2-Contexts Attention. This behavior implements a simple
form of attention to local environment. A second context is
added to be active when the robot is free of any collision
risk. A physical level processor called Open-Space-Processor
continuously calculates the angle (relative to the robot) of the
direction where more open space is available. In this case,
there is a basic mission goal activated in the instantiation
layer that makes the robot to drive in the direction where
more open space is available. Additionally, physical level goals
are only triggered when the physical processors gain more
activation than the instantiation processors, i.e. when the robot
is too close to an obstacle, attention module switches the active
context and the mission-level goal is vetoed (Figure 8 shows
the outcome of this behavior).

3-Contexts Attention. In order to improve the exploration
performance, a third context is defined to be active when the
robot is not exploring unknown areas. A new processor called
Best-Heading-Processor calculated the direction relative to the
robot in which more unknown space can be discovered. Addi-
tionally, a mission-level goal is activated to move towards un-
known areas of the map. The attention module induce a new
bias (the third context) to move the robot away from already
known areas (Figure 9 shows the typical outcome of this strat-
egy).

Figure 6 shows a comparison of the performance of the
three aforementioned behaviors. In average, 1-Context behav-
ior is able to discover 0.19 square meters per second, while
2-Context and 3-Context behaviors map at a rate of 0.29 and
0.36 m? /s respectively. The areas of the graph where there is
no increment in discovered area correspond to the robot being
“trapped” in a room. This is caused by the lack of a global nav-
igation planning mechanism. However, focusing on the local
navigation behavior, the application of attention contexts pro-
vides an efficient mechanism to integrate different autonomous
strategies as a function of robot’s current situation. The ob-
served path followed by the robot in each of the analyzed cases
demonstrates how the attention mechanism induces an adap-
tation by temporarily filtering the unnecessary sensory infor-
mation. When a given goal cannot be achieved due to current
situation, the sensory information correlated with that particu-
lar goal is ignored. For instance, the goal of heading towards
unexplored areas should not be pursued when the robot is ma-
neuvering to avoid a wall (see Figure 9).
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Fig. 6. Exploring Performance

S. CONCLUSIONS

A mechanism for robot attention has been developed as a high-
est level cognitive process of an autonomous control architec-
ture. The cognitive bias induced by attention in the lower lev-
els of control have been analyzed and the resulting behavior
confronted to non-attentional strategies. An efficient method
for integrating attention into a complex hybrid architecture has
been demonstrated given the problem of unknown environment
mapping. The proposed technique provides an efficient way
to select areas of interest out of the available sensory space
based on dynamic contexts. New problem-specific context can
be easily defined within the proposed framework.

As future work, more challenging problem domains, includ-
ing simultaneous localization and mapping with real odometry,
are to be tested. Additionally, the interaction between attention
and other higher cognitive processes is to be explored in de-
tail as the proposed architecture is enhanced with other core
capabilities like learning and planning. In fact, the addition of
global path planning to our architecture could greatly enhance
the performance making possible to define global navigation
contexts.
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Fig. 7. 1-Context Non-Attentional Behavior
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Fig. 8. 2-Contexts Attentional Behavior
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Fig. 9. 3-Contexts Attentional Behavior



