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Abstract— Whatever the mission of an autonomous mobile 

robot is, attention is a helpful cognitive capability when dealing 
with real world environments. In this paper we present a novel 
control architecture which enables an integrated and efficient 
filtering of multiple modality sensory information. The concept 
of context is introduced as the set of criteria that determines 
what sensory information is relevant to the current mission. 
The proposed attention mechanism uses these contexts as a 
mean to adaptively select the constrained cognitive focus of the 
robot within the vast multimodal sensory space available. This 
approach for artificial attention is tested in the domain of 
autonomous mapping. 
 

Index Terms— Physical agents, Attention, cognitive 
modeling, mobile robotics. 

I. INTRODUCTION 

ESIGNING an autonomous control system for a mobile 
robot implies a decision on what inputs will be handled 

and what repertory of actions can be executed at any given 
time. The option of considering all the available sensory 
information as input for the core control of the robot is 
usually both unnecessary and extremely expensive in 
computational terms. Analogously, not all possible robot 
behaviors are appropriate at any given time. Instead of 
considering all physically plausible behaviors, the robot 
control system should take into account its current situation 
and assigned mission in order to build a shorter list of 
eligible behaviors. A simplistic definition of artificial 
attention can be drawn from the problem described above. 
Hence, let us say that an efficient artificial mechanism for 
attention would solve the problem of filtering relevant 
sensory information and selecting relevant behaviors.  
 
 According to the former definition, we need to specify 
what does relevant mean in terms of implementing an 
efficient attention mechanism. Relevant sensor data and 
relevant behaviors are those that could be both useful to 
accomplish the mission and adapted to the world in which 
the robot is situated. Attention has been typically applied to 
artificial vision systems taking the human visual attention 
mechanisms and its related eye movement control 
(foveation) as inspiration [6]. Visual attention has been 
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extensively applied in robotics, e.g. [2]. However, much less 
effort has been put in pure multimodal attention mechanisms 
[7]. Usually attention mechanisms for robots focus in great 
degree in visual sensory information; nevertheless, some 
salient examples incorporate data from other sensors in the 
attention mechanism. For instance, laser range finders [9]. 
In this work we present a purely multimodal attention 
mechanism, in which vision could be eventually 
incorporated, but has not been used for preliminary testing. 
Instead, bumpers and sonar range finders have been applied. 
 
 In the next sections we discuss the implementation of an 
attention mechanism able to fulfill the requirement of 
selecting relevant sensorimotor information. Section II 
covers the definition of the attentional contexts that are used 
to form sets of sensory and motor data. Section III is 
dedicated to explain how the proposed mechanism allows 
the integration of different modality sensory information 
into the same context. The incorporation of the attention 
mechanism into a three-layer control architecture is 
described in section IV. Section V illustrates the application 
of the proposed technique to the domain of autonomous 
mapping. Finally, we conclude in section VI with a 
discussion of the benefits and possible areas of application 
of the attention mechanism in the field of cognitive robotics.  

II. DEFINITION OF ATTENTIONAL CONTEXTS 
Our proposed artificial attention mechanism is inspired in 

the concept of context as defined in the Global Workspace 
Theory (GWT) [5]. The GWT is a cognitive account for 
consciousness, and therefore it covers attention as a key 
characteristic of conscious beings. However, the GWT do 
not provide any algorithmic description of attention but just 
a metaphorical explanation. A theater spotlight simile is 
used to represent the focus of consciousness. This spotlight 
illuminates only a small part of the scene, which is 
considered the conscious content of the mind. The scene is 
actually built upon the subject’s working memory. The 
movement of the spotlight, i.e. the selection of contents that 
will be used for volition and action, is directed by 
unconscious contextual systems. The aim of the work 
described in this paper is to design and test an 
implementation of such contextual systems, which are able 
to adaptively direct attention toward the interesting areas of 
the robot sensorimotor space.  

 
From the point of view of perception, contexts are sets of 

percepts retrieved from the sensors. Percepts are considered 
the minimal information units obtained by the robot sensory 

A Multimodal Attention Mechanism for 
Autonomous Mobile Robotics 

Raúl Arrabales, Agapito Ledezma and Araceli Sanchis 

D 



2                  IX WORKSHOP DE AGENTES FÍSICOS, SEPTIEMBRE 2008, VIGO 
 

machinery [3]. Therefore, a sensory context is a complex 
percept composed of related single percepts. From the point 
of view of behavior, contexts are sets of actions available 
for execution. Hence, we can define behavioral contexts as 
compositions of related actions. In order to generate an 
efficient robot behavior, both sensory contexts and 
behavioral context have to be adaptively generated.  

 

A. Context Criteria 
 
 We have designed the process of context formation as 

the application of predefined criteria in order to calculate 
the degree of relation between the potential elements of a 
given context. Basically, a context should be constructed in 
a way that it can become a meaningful representation of the 
reality, i.e. situatedness must be enforced by a proper 
definition of both sensory and behavioral contexts. The very 
basic factors that need to be considered in the correct 
representation of robot situation in the world are time and 
location. Nevertheless, other factors can be considered 
depending on the problem domain and internal state 
representation richness. 

 
In the work described here only time and location have 

been considered as criteria for context formation. The time 
criterion refers to the exact moment at witch a stimulus is 
perceived. Therefore, it should be taken as an important 
criterion to relate one percept to another. Given that 
different sensors and their associated device drivers can take 
different time intervals to process the sensory information, a 
mechanism for time alignment is required. It has been 
demonstrated that such a time alignment mechanism is 
present in biological brains [10, 13]. Although visual and 
auditory stimuli are processed at different speeds, the time 
gap between different processed signals, whose physical 
originators were acquired at the same time, is automatically 
removed by the brain [14]. 
 

Location is another fundamental criterion for context 
formation as the representation of the position of objects in 
the world is a requirement for situatedness. Furthermore, the 
location of an object relative to the robot body (or any other 
reference frame) is required for generating adaptive 
behaviors. The relative location of any element in the 
sensory world is necessary for the integration of complex 
percepts; additionally, it allows the selection of a given 
direction of attention toward the most relevant places. The 
presence of space coding neurons and the use of reference 
frames (like somatotopic or head-centered) has been 
demonstrated in the mammal brain [8, 4].  

 
Following the principles discussed above, we have used 

time and location as fundamental contextualization criteria 
for the formation of: 

 
• Sensory contexts as composition of single 

percepts, and 
• Behavioral contexts as composition of simple 

actions.  

In order to generate these contexts, both single percepts 
(which are built from data packages obtained from sensors) 
and simple actions (which are defined as part of the robot 
control system) are required to incorporate estimated time 
and location parameters (see Fig. 1). In our proposed 
architecture there are two modules designed to calculate the 
time and location parameters: the Timer module maintains a 
precision clock (1 millisecond resolution) that represents 
robot’s current execution age, and the Propioception 
module that maintains all the required information to 
calculate the exteroceptive sensors position. This 
information is necessary to estimate the relative location of 
an object or event detected by an exteroceptive sensor. The 
time and location parameters provided by the Timer and 
Propioception modules are used by the two preprocessor 
modules in charge of generating the single percepts and 
simple actions. The Sensor Preprocessor takes a given 
sensor reading as input, then calculates the relative position 
of the source of the reading and the instant when it took 
place using the information provided by the Timer and 
Propioception, and finally, it creates a single percept 
packing together the sensor reading with its 
contextualization information. The Action Preprocessor 
takes as input an action generated by the Self-Coordination 
module (this module and the way it works is described 
elsewhere [3]), and applies the same approach as in the 
Sensor Preprocessor in order to build the Simple Action 
representations.  

 

 
Figure 1. Creation of single percepts and simple actions. 
 
 More parameters should be added to single percepts and 

simple actions if other contextualization criteria are to be 
applied. In the work described in the present paper, the 
following parameters have been used: 

 
• Timestamps: two different timestamps are recorded in 

single percepts. The first timestamp is set when the 
sensory data is collected from the sensor. Usually this 
timestamp is directly assigned by the sensor hardware 
and retrieved in the control system thought the sensor 
driver. The second timestamp is set when the percept is 
actually used in the control system. The time span 
between these two timestamps can be significant when 
a sensor is incessantly notifying readings and there is 
not enough onboard processing power to dispatch all 
the incoming data. Actually, the time span value can be 
used to discard too old sensory data which are not 
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significant to the current robot state. Similarly, two 
timestamps are logged in the case of simple action. The 
first one is set when the simple action is created and 
enqueued in the control system. The second timestamp 
is set when the action enters the core execution cycle, 
i.e. when the action is actually dequeued and dispatched 
(begins physical execution). The time span between 
these two timestamps can be used to detect delays in the 
execution queue and eventually abort too old actions.  

 
• J-Index: for the representation of the location 

parameter of both single percepts and simple actions we 
have decided to use the robot body center of mass as 
reference frame. The term J-Index refers to a structure 
able to represent or map the relative position of an 
object or event within a biological brain [1]. We have 
adapted and enhanced the original definition of the J-
Index representation with the aim of representing both 
the relative position and relative dimensions of the 
object. Hence, our J-Indexes are implemented as a 
composition of several n-dimensional vectors. The 
main vector is called the j referent vector, and is used to 
calculate the relative position of the geometrical center 
of the percept’s source or the geometrical target of an 
action. Depending on the nature of the sensor that is 
reporting the sensory data, more positional vectors can 
be calculated in order to estimate the size of the percept 
(examples for sonar range finder and bump panel arrays 
are described below).  

 
 The timestamp parameters are easily acquired using the 
robot’s control system precision timer. However, the J-
Index parameters require more elaboration, particularly in 
the case of movable sensors. In the case discussed here, we 
have used a Pioneer 3DX robot (see Fig. 2a) with fixed 
position sensors: a frontal sonar array (see Fig. 2c) and 
frontal and rear bump panels (see Fig. 2b). In the 
experiments that we have carried out so far, J-Indexes have 
been calculated for sonar readings and bump panels contact 
and release notifications. The J-Indexes are calculated as a 
function of the transducer (fixed) position and orientation 
(relative to the robot front).  
 
 Although the J-Index parameter can be primarily 
represented by a three-dimensional vector, for the problem 
of 2D mapping a two-dimensional j referent vector can be 
considered, where (X,Z) = (0,0) represents the subjective 
reference frame of the robot (see Fig. 2b and 2c). 
Nevertheless, a Y coordinate (height) is usually calculated 
even though it is not used to generate the 2D floor plan 
representation. 
 
 The calculation of the j referent vector is different 
depending on the sensor. In the case of bump panels, as they 
are located at angles around the robot (see Fig. 2b), the j 
referent vector is calculated using equation (1). Where, BR 
is the bump panel radius, i.e. the distance from the center of 
mass of the robot to the bumper contact surface (see Fig. 
2b). BA is the bump panel angle to the front of the robot 
(Pioneer 3 DX bump panels are located at angles -52º, -19º, 

0º, 19º, and 52º). BH is the height at which the bumpers are 
mounted. 
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 Additionally, two more vectors are calculated to be 
associated to a bumper percept: the left-j referent and the 
right-j referent (see Fig. 3). These two vectors represent the 
dimensions of the percept (the width assigned to the 
collision). 
 

 
Figure 2. MobileRobots Pioneer 3 DX Robot, frontal 

bumper panel, and frontal sonar ring. 
  
 In order to calculate the j referent vector corresponding to 
a given sonar reading, Equation (2) is used. Note that the 
calculation of j referent vectors is dependent on the type of 
sensor being considered.  
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 Where, R is the maximum range measured by the sonar 
transducer, SR is the distance from the center of mass of the 
robot to the sonar transducer, and SA is the angle at which 
the particular sonar transducer is located. Note that sonar 
transducers are located at angles -90º, -50º, -30º, -10º, 10º, 
30º, 50º, and 90º to the front of the robot (see Fig. 2c). 
Therefore, each transducer is able to measure the free space 
available within a three-dimensional 15º wide cone (this 
cone aperture corresponds to the SensComp 600 transducer). 
 
 

 
Figure 3. Vectors calculated to build the J-Index of a single 

bump panel contact percept. 
 
 Taking into account that the ultrasonic beams emitted by 
the sonar transducers take the form of a symmetric three-
dimensional cone, at least one additional j referent vector 
has to be calculated in order to estimate the dimensions of 
the single transducer sonar percept, i.e. the open space 
perceived in front of that particular sonar transducer. The 
main j referent vector calculated using Equation (2) 
represents the cone bisector. Additionally, two more 
vectors: the left-j referent vector and right-j referent vector 
represent the lateral 2D boundaries of the percept (see Fig. 
4).  

 
Figure 4. Vectors calculated to build the J-Index of a single 

sonar transducer percept. 

 The representations of J-Indexes for both sonar and 
bumpers have been designed as described above with the 
aim of implementing an attention algorithm. Although some 
of the calculated reference vectors are expendable, they are 
useful to pre-calculate the regions of the world affected by a 
given percept. Besides, this representation is also 
particularly useful for the subsequent task of 2D mapping.  
 

B. Actions Context Composition  
 
 As Single Percepts and Simple Actions include the 
contextualization parameters (timestamps and J-Indexes) it 
is straightforward to calculate similarity distances between 
them. Therefore, contexts can be defined based on the 
dimensions of relative time and relative location. Each 
sensory context is used to build a representation structure 
called complex percept (see Fig. 5a). Complex percepts 
enclose the required information to represent the meaning of 
the associated sensory context as required by the subsystems 
of the autonomous control system. As behavioral contexts 
are formed they may trigger the generation of the 
corresponding complex behaviors, which are representations 
that enclose sequences of actions specified by the behavioral 
context (see Fig. 5b). In the present work, the behavioral 
context formation has been oversimplified because the only 
available actuator is the Pioneer 3DX differential drive. 
Two basic operations have been defined for the control of 
the differential drive:  
 

 RotateInPlace: this operation takes an angle in 
degrees as input parameter (positive values mean 
counterclockwise rotation) and triggers the robot 
rotation in position until it completes the consigned 
angle. 

 MoveStraight: this operation takes a speed in 
meters per second as input parameter (positive 
values mean move forward) and triggers the robot 
movement towards the current heading (or 
backwards for negative speed values). 

 

 
 

Figure 5. Formation of complex percepts and complex 
behaviors. 

 
 Attending to the relative direction specified by the 
attention mechanism (a composition of J-Indexes 
representations), an angle parameter is calculated for the 
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RotateInPlace operation in order to set the robot heading 
towards the object that “called the robot’s attention”. Also, a 
speed parameter is calculated as a function of the distance to 
the object. This means that the typical minimum behavioral 
context is formed by a sequence of simple actions like a 
RotateInPlace operation followed by a MoveStraight 
operation. 

III. MULTIMODAL INTEGRATION 
Combining multiple monomodal sensory data sources is a 

typical problem in mobile robotics, also known as 
multisensory integration or sensor data fusion [11]. 
Actually, in the present work we are also approaching the 
problem of fusing propioceptive and exteroceptive sensor 
data. Neuroscientists refer to the binding problem [12], as 
the analogous problem of how to form a unified perception 
out of the activity of specialized sets of neurons dealing 
with particular aspects of perception. From the perspective 
of autonomous robot control we argue that the binding 
problem can be functionally resolved by applying the 
proposed contextualization mechanism.  

 

A. Monomodal Context Formation 
 
Taking the bump panel percepts as example, we can 

illustrate how a sensory context gives place to a monomodal 
complex percept. Using the aforementioned criteria, time 
and location, if the bumper driver of our robot reports 
contact events in bump panels b2, b3, and b4 
simultaneously (see Fig. 6), a context is automatically 
created if these three independent notifications have close 
enough timestamps. Therefore, the three single percepts are 
associated by a temporal context. Additionally, as b2, b3, 
and b4 are located side by side, the corresponding contact 
percepts J-Indexes will indicate proximity, thus forming an 
additional spatial context that again associates these three 
single percepts. The newly created complex percept, which 
is a composition of three single percepts, also holds a 
representation of a J-Index. This complex percept J-Index is 
calculated as a function of the reference vectors of the 
former single percepts (note that Fig. 6 depicts with solid 
lines the J-Index referent vectors of the formed complex 
percept, and dashed lines represent the referent vector of the 
old single percepts).  

  

 
Figure 6. Vectors calculated to build the J-Index of a 

complex bumper contact percept. 

The way the J-Index of a complex percept is calculated 
depends on the nature (shape, dimensions, etc.) of the single 
percepts that take part in the context that gave place to it. 
The composition of J-Indexes is trivial when all the single 
percepts belong to the same modality (as illustrated in Fig. 
6). However, the composition can be complex when several 
different modalities are involved.  

 

B. Multimodal Context Formation 
 
Focusing on the mentioned fundamental criteria for 

contextualization (time and location), all percepts, 
independently of their modality, can be compared with each 
other, thus allowing a simple mechanism to create 
perceptual contexts. The key point is that selected criteria 
for context formation must be common to all available 
sensory modalities. The contexts formed following this 
method can have significant meanings. For instance, “all 
objects within the reach of the robot” (context formed 
applying the criterion of location and estimating that the 
relative location is below a given threshold, like the robotic 
arm reach distance in this case), or “all events that took 
place between five and ten minutes ago” (context formed 
applying the criterion of time and estimating that the relative 
timestamp of the events fall within the given interval). 
Similarly, more criteria could be used in order to build more 
specific contexts. Note that the formation of these sorts of 
contexts can involve different modality sensors, like laser 
range finders, sonar range finders, camera sensors, etc.  

 
A common application of multimodal sensory 

information fusion is the disambiguation or refutation of 
contradictory sensor data. In the case under study in this 
paper, contradictory information happen to be processed 
when the sonar transducers fail to detect a sharp solid corner 
(the ultrasonic beams are diverted, and do not come back to 
the transducer, failing to provide a realistic range 
measurement). In such a scenario, the last resorts are the 
bumpers. When the robot base is too close to the sharp 
corner, bumpers will contact the obstacle and notify single 
percepts, which in turn will become complex percepts. 
However, during the process of complex percepts 
formation, potential contradictory information has to be 
handled. The time criteria for context formation will 
associate the roughly simultaneous readings from both sonar 
and bumpers. But, in the case of a bad sonar reading the 
single percepts available are not consistent. Therefore, a 
policy has to be established in order to build a significant 
complex percept out of conflicting single percepts. A single 
but effective approach is to apply a level of confidence to 
each sensor modality depending on the situation. In the case 
described here, we have just assigned more confidence to 
bumper contact notifications than sonar measurements.  

 
The attention mechanism proposed in this work is 

designed to be highly dynamic and configurable. Following 
the principles described above, as many contexts can be 
created as criteria have been defined, and one or more 
contexts can be used to form a complex percept. The 
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concrete definition of criteria and context is to be selected 
based on the specific problem domain. Nevertheless, the 
necessity of integrating this attention mechanism into a 
control architecture is always present, independently of the 
problem domain.  

 

IV. LAYERED ATTENTION 
Typically, autonomous robot control architectures are 

structured in layers. Each layer usually represents a different 
level of control, from lower reactive levels to higher 
deliberative levels. In the case of the proposed attention 
mechanism, a three level control architecture called CERA 
(Conscious and Emotional Reasoning Architecture) has 
been considered (see Figure 7) [3].  

 

 
Figure 7. CERA Control Architecture Layers. 

 
CERA Physical Layer provides the required functionality 

in order to interface with the robot hardware. In other 
words, it provides access to physical (or simulated) sensors 
and actuators. Additionally, as the CERA architecture has 
been designed to host the proposed attention mechanism, 
the physical layer is also in charge of calculating the J-
Indexes of percepts and actions. From the point of view of 
the attention mechanism, the CERA Physical Layer is the 
domain of Single Percepts and Simple Actions. As the 
Physical Layer is specific to a given hardware it has to be 
changed or adapted if the underlying physical robot is 
replaced by a different model. The composition of percepts 
and actions forming Complex Percepts and Complex 
Actions takes place in the CERA Instantiation Layer. This is 
the place where mission-specific contexts are to be applied, 
and therefore mission-specific complex percepts and 
behaviors are generated. As the Instantiation Layer is 
designed specifically for a given problem domain it can be 
replaced by a different problem instantiation without 
changing the existing Physical and Core layers. Finally, the 
CERA Core Layer is where a machine consciousness model 
is implemented based on several modules that represent 
higher cognitive functions. One of these functions related to 
consciousness is attention. The attention module 
implemented in the Core Layer is designed to activate the 
most appropriate contexts at any given time.  

 
At the level of the CERA Core Layer learning 

mechanisms could be applied in order to improve the 
attention selection technique. Moreover, the attention 
mechanism is to be integrated with other Core Layer 
modules, like memory and self-coordination managers in 

order to use the required related information for the 
activation of appropriate contexts in the instantiation layer.  

 

V. PAYING ATTENTION TO MAPPING 
Autonomous mapping of unknown office-like 

environments has been selected as preliminary problem 
domain for the testing of the proposed attention mechanism. 
It provides a valid real world scenario where the sensors and 
actuators described above can be used alone to achieve the 
mission goal: to obtain an approximate floor plan of the 
surroundings. The simulated scenario that we have initially 
configured for the testing provides perfect odometry (there 
is no noise induced in the robot wheel encoders); therefore, 
we have focused on the problem of mapping, neglecting the 
localization estimation problem for the time being. Figure 8 
shows a screen capture of the simulated environment we 
have used for initial testing.  

 

 
Figure 8. Simulated indoor environment. 

   
One of the objectives of the proposed attention 

mechanism is to offer an effective policy for selecting the 
next action (or complex behavior) as part of the robot’s 
main control loop. In the case of unknown environment 
exploration, spatial contexts are defined in order to estimate 
the best heading that the robot should take. A specific 
CERA Instantiation Layer has been coded with the aim of 
representing the particular complex percepts that are 
required for the mapping mission. Concretely, sonar single 
percepts that represent an obstacle are combined, using their 
J-indexes as combination criteria, into complex percepts 
that symbolize walls. Figure 9 shows an illustration of part 
of the internal state maintained by the Instantiation Layer. 
Wall complex percepts are represented with black solid 
lines, and white areas represent free space.  

 
Based on the internal map representation, which is 

continuously updated with new sensed percepts, the 
attention module calculates a set of possible regions of 
interest, i.e. areas where the robot should pay attention to. 
Following the same design principle as explained above for 
the single and complex percepts, a j referent vector is 
calculated for each region of interest. Taking into account 
that minimizing exploration time is a requirement of the 
autonomous mapping mission, attention should be focused 
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on those areas which have not been previously visited. 
Therefore, region of interest j referents are periodically 
calculated as a function of available unexplored space 
around the robot. 

 

 
Figure 9. Map automatically generated by the robot. 

 
The attention module performs a 360º scan, applying 45º 

steps, over the map generated so far. Note that these are not 
real sonar scans physically performed by the robot, but just 
a logical scan performed over the internal robot map 
representation. This internal representation of a map is built 
using the sonar range data as the robot wander around the 
environment. The example illustrated in Figure 9 shows that 
a 22.5º inclination j referent has been selected. This vector 
indicates that a region of interest exists in that direction.  

 
There is a key difference between the j referent vectors 

that we defined for percepts and actions, and the j referent 
vector used for region of interests. While the former are 
relative to the robot center of mass and current heading, the 
latter are absolute in terms of map orientation. As our robot 
is not equipped with a compass, north is arbitrarily set up to 
the initial robot heading. Every time a sonar scan in used to 
update the map, a reference frame conversion is applied 
from the relative reference system of the robot to the 
absolute reference system used in the map representation. 
Conversely, when the j referent vector of a region of interest 
is selected by attention, it is converted to the robot’s relative 
reference frame before building the corresponding complex 
behavior: rotate in place until the heading matches the 
region of interest direction, and then move straight.  

 

VI. CONCLUSION 
A novel attention mechanism for autonomous robots has 

been proposed and preliminary testing has been done in the 
domain of unknown environment mapping. The integration 
of the attention cognitive function into a layered control 
architecture has been demonstrated. Additionally, the 
problem of multimodal sensory information fusion has been 
addressed in the proposed approach using a generic context 
formation mechanism. The preliminary results obtained with 
the simulator show that this account is applicable to 
classical mobile robotics problems like autonomous 
mapping. Nevertheless, moving to a real world environment 

will imply dealing with the problem of imperfect odometry 
[15]. In such a scenario our proposed attention mechanism 
has to be integrated into an SLAM (Simultaneous 
Localization and Mapping) system. This work is currently 
underway, and the same described mechanism is expected to 
be used. As a final map cannot be used as internal 
representation of the real world environment, a typical 
probabilistic map should be used instead.  

 
The system described in this paper is work in progress. 

More complex attentional contexts (and therefore more 
contextual criteria) have to be defined in order to face other 
problem domains. Perception is well covered for sonar 
range finder and bumpers. Nevertheless, the proposed 
technique can be applied to other sensors and actuators. 
Additional development would be required in the CERA 
Physical Layer in order to add other sensors like laser range 
finders or vision sensors. The definition of behavioral 
contexts and complex behaviors should be also enhanced to 
cope with more complex actuators and to generate more 
efficient behaviors.  
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